Thursday 22 December 2016

Visions of Our Solar System (Natural History Museum, early 2016. Sunday Times Magazine)

Just a couple of pictures which struck me as quite beautiful, for the exhibition earlier in the year.




George Mueller Obituary (The Guardian)

One of the lesser known characters in the Apollo story - but still found his obituary interesting.



Comet 67P (The Guardian)

Catching up on some old stuff which I had saved to post on the blog.


Loved this picture, from an aesthetic and scientific point of view.  In addition, text described well the picture to a non-science audience.



Link to ESA Missions list

http://www.esa.int/ESA/Our_Missions

Link to A-Z of Nasa Missions

https://www.nasa.gov/missions

Monday 19 December 2016

Ten Years of Discovery by Mars Reconnaissance Orbiter - Movie (NASA)

Fantastic, detailed imagery celebrating Mars Reconnaissance's 10 years of operation.


Mars Reconnaissance Orbiter movie link
Ahuna Mons seen from LAMO




One year ago, on March 6, 2015, NASA's Dawn spacecraft slid gently into orbit around Ceres, the largest body in the asteroid belt between Mars and Jupiter. Since then, the spacecraft has delivered a wealth of images and other data that open an exciting new window to the previously unexplored dwarf planet.
"Ceres has defied our expectations and surprised us in many ways, thanks to a year's worth of data from Dawn. We are hard at work on the mysteries the spacecraft has presented to us," said Carol Raymond, deputy principal investigator for the mission, based at NASA's Jet Propulsion Laboratory, Pasadena, California.
Among Ceres' most enigmatic features is a tall mountain the Dawn team named Ahuna Mons. This mountain appeared as a small, bright-sided bump on the surface as early as February 2015 from a distance of 29,000 miles (46,000 kilometers), before Dawn was captured into orbit. As Dawn circled Ceres at increasingly lower altitudes, the shape of this mysterious feature began to come into focus. From afar, Ahuna Mons looked to be pyramid-shaped, but upon closer inspection, it is best described as a dome with smooth, steep walls.
Dawn's latest images of Ahuna Mons, taken 120 times closer than in February 2015, reveal that this mountain has a lot of bright material on some of its slopes, and less on others. On its steepest side, it is about 3 miles (5 kilometers) high. The mountain has an average overall height of 2.5 miles (4 kilometers). It rises higher than Washington's Mount Rainier and California's Mount Whitney.
Scientists are beginning to identify other features on Ceres that could be similar in nature to Ahuna Mons, but none is as tall and well-defined as this mountain.
"No one expected a mountain on Ceres, especially one like Ahuna Mons," said Chris Russell, Dawn's principal investigator at the University of California, Los Angeles. "We still do not have a satisfactory model to explain how it formed."
About 420 miles (670 kilometers) northwest of Ahuna Mons lies the now-famous Occator Crater. Before Dawn arrived at Ceres, images of the dwarf planet from NASA's Hubble Space Telescope showed a prominent bright patch on the surface. As Dawn approached Ceres, it became clear that there were at least two spots with high reflectivity. As the resolution of images improved, Dawn revealed to its earthly followers that there are at least 10 bright spots in this crater alone, with the brightest area on the entire body located in the center of the crater. It is not yet clear whether this bright material is the same as the material found on Ahuna Mons.
"Dawn began mapping Ceres at its lowest altitude in December, but it wasn't until very recently that its orbital path allowed it to view Occator's brightest area. This dwarf planet is very large and it takes a great many orbital revolutions before all of it comes into view of Dawn's camera and other sensors," said Marc Rayman, Dawn's chief engineer and mission director at JPL.
Researchers will present new images and other insights about Ceres at the 47th Lunar and Planetary Science Conference, during a press briefing on March 22 in The Woodlands, Texas.


When it arrived at Ceres on March 6, 2015, Dawn made history as the first mission to reach a dwarf planet, and the first to orbit two distinct extraterrestrial targets. The mission conducted extensive observations of Vesta in 2011-2012.
Dawn's mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit:
http://dawn.jpl.nasa.gov/mission
More information about Dawn is available at the following sites:
http://dawn.jpl.nasa.gov

Conditions for life may hinge on how fast the universe is expanding (AAAS)

Scientists have known for several years now that stars, galaxies, and almost everything in the universe is moving away from us (and from everything else) at a faster and faster pace. Now, it turns out that the unknown forces behind the rate of this accelerating expansion—a mathematical value called the cosmological constant—may play a previously unexplored role in creating the right conditions for life.
That’s the conclusion of a group of physicists who studied the effects of massive cosmic explosions, called gamma ray bursts, on planets. They found that when it comes to growing life, it’s better to be far away from your neighbors—and the cosmological constant helps thin out the neighborhood.
“In dense environments, you have many explosions, and you’re too close to them,” says cosmologist and theoretical physicist Raul Jimenez of the University of Barcelona in Spain and an author on the new study. “It’s best to be in the outskirts, or in regions that have not been highly populated by small galaxies—and that’s exactly where the Milky Way is.”
Jimenez and his team had previously shown that gamma ray bursts could cause mass extinctions or make planets inhospitable to life by zapping them with radiation and destroying their ozone layer. The bursts channel the radiation into tight beams so powerful that one of them sweeping through a star system could wipe out planets in another galaxy. For their latest work, published this month in Physical Review Letters, they wanted to apply those findings on a broader scale and determine what type of universe would be most likely to support life.
The research is the latest investigation to touch on the so-called anthropic principle: the idea that in some sense the universe is tuned for the emergence of intelligent life. If the forces of nature were much stronger or weaker than physicists observe, proponents note, crucial building blocks of life—such fundamental particles, atoms, or the long-chain molecules needed for the chemistry of life—might not have formed, resulting in a sterile or even completely chaotic universe. Some researchers have tried to gauge how much “wiggle room” various physical constants might have for change before making the cosmos unrecognizable and uninhabitable. Others, however, question what such research really means and whether it is worthwhile.
Jimenez and colleagues tackled one, large-scale facet of the anthropic principle. They used a computer model to run simulations of the universe expanding and accelerating at many different speeds. They then measured how changing the cosmological constant affected the universe’s density, paying particular attention to what that meant about gamma ray bursts raining down radiation on stars and planets.
As it turns out, our universe seems to get it just about right. The existing cosmological constant means the rate of expansion is large enough that it minimizes planets’ exposure to gamma ray bursts, but small enough to form lots of hydrogen-burning stars around which life can exist. (A faster expansion rate would make it hard for gas clouds to collapse into stars.)
Jimenez says the expansion of the universe played a bigger role in creating habitable worlds than he expected. “It was surprising to me that you do need the cosmological constant to clear out the region and make it more suburbanlike,” he says.
Beyond what they reveal about the potential for life in our galaxy and beyond, the findings offer a new nugget of insight into one of the biggest puzzles in cosmology: why the cosmological constant is what it is, says cosmologist Alan Heavens, director of the Imperial Centre for Inference and Cosmology at Imperial College London.
In theory, Heavens explains, either the constant should be hundreds of orders of magnitude higher than it appears to be, or it should be zero, in which case the universe wouldn’t accelerate. But this would disagree with what astronomers have observed. “The small—but nonzero—size of the cosmological constant is a real puzzle in cosmology,” he says, adding that the research shows the number is consistent with the conditions required for the existence of intelligent life that is capable of observing it.
Lee Smolin, a theoretical physicist at Perimeter Institute for Theoretical Physics in Waterloo, Canada, and a skeptic of the anthropic principle, says the paper’s argument is a novel one and that on first reading he didn’t see any obvious mistakes. “I’ve not heard it before, so they’re to be praised for making a new argument,” he says.
However, he adds, all truly anthropic arguments to date fall back on fallacies or circular reasoning. For example, many tend to cherry-pick by looking only at one variable in the development of life at a time; looking at several variables at once could lead to a different conclusion.
Jimenez says the next step is to investigate whether gamma ray bursts are really as devastating to life as scientists believe. His team’s work has shown only that exposure to such massive bursts of radiation would almost certainly peel away a planet’s protective ozone layer.  “Is this going to be catastrophic to life?” he says. “I think so, but it may be that life is more resilient than we think.”

Gravitational Waves Detected 100 Years After Einstein's Prediction (LIGO)

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.
Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The gravitational waves were detected on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (09:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.
Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of the sun, and the event took place 1.3 billion years ago. About 3 times the mass of the sun was converted into gravitational waves in a fraction of a second—with a peak power output about 50 times that of the whole visible universe. By looking at the time of arrival of the signals—the detector in Livingston recorded the event 7 milliseconds before the detector in Hanford—scientists can say that the source was located in the Southern Hemisphere.
According to general relativity, a pair of black holes orbiting around each other lose energy through the emission of gravitational waves, causing them to gradually approach each other over billions of years, and then much more quickly in the final minutes. During the final fraction of a second, the two black holes collide into each other at nearly one-half the speed of light and form a single more massive black hole, converting a portion of the combined black holes’ mass to energy, according to Einstein’s formula E=mc2. This energy is emitted as a final strong burst of gravitational waves. It is these gravitational waves that LIGO has observed.
The existence of gravitational waves was first demonstrated in the 1970s and 80s by Joseph Taylor, Jr., and colleagues. Taylor and Russell Hulse discovered in 1974 a binary system composed of a pulsar in orbit around a neutron star. Taylor and Joel M. Weisberg in 1982 found that the orbit of the pulsar was slowly shrinking over time because of the release of energy in the form of gravitational waves. For discovering the pulsar and showing that it would make possible this particular gravitational wave measurement, Hulse and Taylor were awarded the Nobel Prize in Physics in 1993.
The new LIGO discovery is the first observation of gravitational waves themselves, made by measuring the tiny disturbances the waves make to space and time as they pass through the earth.
“Our observation of gravitational waves accomplishes an ambitious goal set out over 5 decades ago to directly detect this elusive phenomenon and better understand the universe, and, fittingly, fulfills Einstein’s legacy on the 100th anniversary of his general theory of relativity,” says Caltech’s David H. Reitze, executive director of the LIGO Laboratory.
The discovery was made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed—and the discovery of gravitational waves during its first observation run. The US National Science Foundation leads in financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project. Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration. Significant computer resources have been contributed by the AEI Hannover Atlas Cluster, the LIGO Laboratory, Syracuse University, and the University of Wisconsin- Milwaukee. Several universities designed, built, and tested key components for Advanced LIGO: The Australian National University, the University of Adelaide, the University of Florida, Stanford University, Columbia University of the City of New York, and Louisiana State University.
“In 1992, when LIGO’s initial funding was approved, it represented the biggest investment the NSF had ever made,” says France Córdova, NSF director. “It was a big risk. But the National Science Foundation is the agency that takes these kinds of risks. We support fundamental science and engineering at a point in the road to discovery where that path is anything but clear. We fund trailblazers. It’s why the U.S. continues to be a global leader in advancing knowledge.”
LIGO research is carried out by the LIGO Scientific Collaboration (LSC), a group of more than 1000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the LSC develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration. The LSC detector network includes the LIGO interferometers and the GEO600 detector. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom, and the University of the Balearic Islands in Spain.
“This detection is the beginning of a new era: The field of gravitational wave astronomy is now a reality,” says Gabriela González, LSC spokesperson and professor of physics and astronomy at Louisiana State University.
LIGO was originally proposed as a means of detecting these gravitational waves in the 1980s by Rainer Weiss, professor of physics, emeritus, from MIT; Kip Thorne, Caltech’s Richard P. Feynman Professor of Theoretical Physics, emeritus; and Ronald Drever, professor of physics, emeritus, also from Caltech.
“The description of this observation is beautifully described in the Einstein theory of general relativity formulated 100 years ago and comprises the first test of the theory in strong gravitation. It would have been wonderful to watch Einstein’s face had we been able to tell him,” says Weiss.
“With this discovery, we humans are embarking on a marvelous new quest: the quest to explore the warped side of the universe—objects and phenomena that are made from warped spacetime. Colliding black holes and gravitational waves are our first beautiful examples,” says Thorne.
Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: 6 from Centre National de la Recherche Scientifique (CNRS) in France; 8 from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; 2 in The Netherlands with Nikhef; the Wigner RCP in Hungary; the POLGRAW group in Poland; and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.
Fulvio Ricci, Virgo Spokesperson, notes that, “This is a significant milestone for physics, but more importantly merely the start of many new and exciting astrophysical discoveries to come with LIGO and Virgo.”
Bruce Allen, managing director of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute), adds, “Einstein thought gravitational waves were too weak to detect, and didn’t believe in black holes. But I don’t think he’d have minded being wrong!”
“The Advanced LIGO detectors are a tour de force of science and technology, made possible by a truly exceptional international team of technicians, engineers, and scientists,” says David Shoemaker of MIT, the project leader for Advanced LIGO. “We are very proud that we finished this NSF-funded project on time and on budget.”
At each observatory, the two-and-a-half-mile (4-km) long L-shaped LIGO interferometer uses laser light split into two beams that travel back and forth down the arms (four-foot diameter tubes kept under a near-perfect vacuum). The beams are used to monitor the distance between mirrors precisely positioned at the ends of the arms. According to Einstein’s theory, the distance between the mirrors will change by an infinitesimal amount when a gravitational wave passes by the detector. A change in the lengths of the arms smaller than one-ten-thousandth the diameter of a proton (10-19 meter) can be detected.
“To make this fantastic milestone possible took a global collaboration of scientists—laser and suspension technology developed for our GEO600 detector was used to help make Advanced LIGO the most sophisticated gravitational wave detector ever created,” says Sheila Rowan, professor of physics and astronomy at the University of Glasgow.
Independent and widely separated observatories are necessary to determine the direction of the event causing the gravitational waves, and also to verify that the signals come from space and are not from some other local phenomenon.
Toward this end, the LIGO Laboratory is working closely with scientists in India at the Inter-University Centre for Astronomy and Astrophysics, the Raja Ramanna Centre for Advanced Technology, and the Institute for Plasma to establish a third Advanced LIGO detector on the Indian subcontinent. Awaiting approval by the government of India, it could be operational early in the next decade. The additional detector will greatly improve the ability of the global detector network to localize gravitational-wave sources.
“Hopefully this first observation will accelerate the construction of a global network of detectors to enable accurate source location in the era of multi-messenger astronomy,” says David McClelland, professor of physics and director of the Centre for Gravitational Physics at the Australian National University.
Additional video and image assets can be found here: http://mediaassets.caltech.edu/gwave

Particles in Love: Quantum Mechanics Explored in New Study (NASA)





Here's a love story at the smallest scales imaginable: particles of light. It is possible to have particles that are so intimately linked that a change to one affects the other, even when they are separated at a distance.
This idea, called "entanglement," is part of the branch of physics called quantum mechanics, a description of the way the world works at the level of atoms and particles that are even smaller. Quantum mechanics says that at these very tiny scales, some properties of particles are based entirely on probability. In other words, nothing is certain until it happens.
Testing Bell's Theorem
Albert Einstein did not entirely believe that the laws of quantum mechanics described reality. He and others postulated that there must be some hidden variables at work, which would allow quantum systems to be predictable. In 1964, however, John Bell published the idea that any model of physical reality with such hidden variables also must allow for the instantaneous influence of one particle on another. While Einstein proved that information cannot travel faster than the speed of light, particles can still affect each other when they are far apart according to Bell.

Scientists consider Bell's theorem an important foundation for modern physics. While many experiments have taken place to try to prove his theorem, no one was able to run a full, proper test of the experiment Bell would have needed until recently. In 2015, three separate studies were published on this topic, all consistent with the predictions of quantum mechanics and entanglement.
"What's exciting is that in some sense, we're doing experimental philosophy," said Krister Shalm, physicist with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Shalm is lead author on one of the 2015 studies testing Bell's theorem. "Humans have always had certain expectations of how the world works, and when quantum mechanics came along, it seemed to behave differently."
How 'Alice and Bob' Test Quantum Mechanics
The paper by Shalm, Marsili and colleagues was published in the journal Physical Review Letters, with the mind-bending title "Strong Loophole-Free Test of Local Realism."
"Our paper and the other two published last year show that Bell was right: any model of the world that contains hidden variables must also allow for entangled particles to influence one another at a distance," said Francesco Marsili of NASA's Jet Propulsion Laboratory in Pasadena, California, who collaborated with Shalm.
An analogy helps to understand the experiment, which was conducted at a NIST laboratory in Boulder:
Imagine that A and B are entangled photons. A is sent to Alice and B is sent to Bob, who are located 607 feet (185 meters) apart.
Alice and Bob poke and prod at their photons in all kinds of ways to get a sense of their properties. Without talking to each other, they then each randomly decide how to measure their photons, using random number generators to guide their decisions. When Alice and Bob compare notes, they are surprised to find that the results of their independent experiments are correlated. In other words, even at a distance, measuring one photon of the entangled pair affects the properties of the other photon.
"It's as if Alice and Bob try to tear the two photons apart, but their love still persists," Shalm said. In other words, the entangled photons behave as if they are two parts of a single system, even when separated in space.
Alice and Bob -- representing actual photon detectors -- then repeat this with many other pairs of entangled photons, and the phenomenon persists.
In reality, the photon detectors are not people, but superconducting nanowire single photon detectors (SNSPDs). SNSPDs are metal strips that are cooled until they become "superconducting," meaning they lose their electric resistance. A photon hitting this strip causes it to turn into a normal metal again momentarily, so the resistance of the strip jumps from zero to a finite value. This change in resistance allows the researchers to record the event.
To make this experiment happen in a laboratory, the big challenge is to avoid losing photons as they get sent to the Alice and Bob detectors through an optical fiber. JPL and NIST developed SNSPDs with worldrecord performance, demonstrating more than 90 percent efficiency and low "jitter," or uncertainty on the time of arrival of a photon. This experiment would not have been possible without SNSPDs.
Why This is Useful
The design of this experiment could potentially be used in cryptography -- making information and communications secure -- as it involves generating random numbers.
"The same experiment that tells us something deep about how the world is constructed also can be used for these applications that require you to keep your information safe," Shalm said.
Cryptography isn't the only application of this research. Detectors similar to those used for the experiment, which were built by JPL and NIST, could eventually also be used for deep-space optical communication. With a high efficiency and low uncertainty about the time of signal arrival, these detectors are well-suited for transmitting information with pulses of light in the optical spectrum.
"Right now we have the Deep Space Network to communicate with spacecraft around the solar system, which encodes information in radio signals. With optical communications, we could increase the data rate of that network 10- to 100-fold," Marsili said.
Deep space optical communication using technology similar to the detectors in Marsili's experiment was demonstrated with NASA's Lunar Atmosphere Dust and Environment Explorer (LADEE) mission, which orbited the moon from October 2013 to April 2014. A technology mission called the Lunar Laser Communication Demonstration, with components on LADEE and on the ground, downlinked data encoded in laser pulses, and made use of ground receivers based on SNSPDs.
NASA's Space Technology Mission Directorate is working on the Laser Communications Relay Demonstration (LCRD) mission. The mission proposes to revolutionize the way we send and receive data, video and other information, using lasers to encode and transmit data at rates 10 to 100 times faster than today's fastest radio-frequency systems, using significantly less mass and power.
"Information can never travel faster than the speed of light -- Einstein was right about that. But through optical communications research, we can increase the amount of information we send back from space," Marsili said. "The fact that the detectors from our experiment have this application creates great synergy between the two endeavors."
And so, what began as the study of "love" between particles is contributing to innovations in communications between space and Earth. "Love makes the world go 'round," and it may, in a sense, help us learn about other worlds.

Saturn's Rings: Less than Meets the Eye? (NASA)

Tethys in top left of image.


It seems intuitive that an opaque material should contain more stuff than a more translucent substance. For example, muddier water has more suspended particles of dirt in it than clearer water. Likewise, you might think that, in the rings of Saturn, more opaque areas contain a greater concentration of material than places where the rings seem more transparent.
But this intuition does not always apply, according to a recent study of the rings using data from NASA's Cassini mission. In their analysis, scientists found surprisingly little correlation between how dense a ring might appear to be -- in terms of its opacity and reflectiveness -- and the amount of material it contains.
The new results concern Saturn's B ring, the brightest and most opaque of Saturn's rings, and are consistent with previous studies that found similar results for Saturn's other main rings.
The scientists found that, while the opacity of the B ring varied by a large amount across its width, the mass - or amount of material - did not vary much from place to place. They "weighed" the nearly opaque center of the B ring for the first time -- technically, they determined its mass density in several places -- by analyzing spiral density waves. These are fine-scale ring features created by gravity tugging on ring particles from Saturn's moons, and the planet's own gravity. The structure of each wave depends directly on the amount of mass in the part of the rings where the wave is located.
"At present it's far from clear how regions with the same amount of material can have such different opacities. It could be something associated with the size or density of individual particles, or it could have something to do with the structure of the rings," said Matthew Hedman, the study's lead author and a Cassini participating scientist at the University of Idaho, Moscow. Cassini co-investigator Phil Nicholson of Cornell University, Ithaca, New York, co-authored the work with Hedman.
"Appearances can be deceiving," said Nicholson. "A good analogy is how a foggy meadow is much more opaque than a swimming pool, even though the pool is denser and contains a lot more water."
Research on the mass of Saturn's rings has important implications for their age. A less massive ring would evolve faster than a ring containing more material, becoming darkened by dust from meteorites and other cosmic sources more quickly. Thus, the less massive the B ring is, the younger it might be -- perhaps a few hundred million years instead of a few billion.
"By 'weighing' the core of the B ring for the first time, this study makes a meaningful step in our quest to piece together the age and origin of Saturn's rings," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory, Pasadena, California. "The rings are so magnificent and awe-inspiring, it's impossible for us to resist the mystery of how they came to be."
While all the giant planets in our solar system (Jupiter, Saturn, Uranus and Neptune) have ring systems of their own, Saturn's are clearly different. Explaining why Saturn's rings are so bright and vast is an important challenge in understanding their formation and history. For scientists, the density of material packed into each section of the rings is a critical factor in ascribing their formation to a physical process.
An earlier study by members of Cassini's composite infrared spectrometer team had suggested the possibility that there might be less material in the B ring than researchers had thought. The new analysis is the first to directly measure the density of mass in the ring and demonstrate that this is the case.
Hedman and Nicholson used a new technique to analyze data from a series of observations by Cassini's visible and infrared mapping spectrometer as it peered through the rings toward a bright star. By combining multiple observations, they were able to identify spiral density waves in the rings that aren't obvious in individual measurements.
The analysis also found that the overall mass of the B ring is unexpectedly low. It was surprising, said Hedman, because some parts of the B ring are up to 10 times more opaque than the neighboring A ring, but the B ring may weigh in at only two to three times the A ring's mass.
Despite the low mass found by Hedman and Nicholson, the B ring is still thought to contain the bulk of material in Saturn's ring system. And although this study leaves some uncertainty about the ring's mass, a more precise measurement of the total mass of Saturn's rings is on the way. Previously, Cassini had measured Saturn's gravity field, telling scientists the total mass of Saturn and its rings. In 2017, Cassini will determine the mass of Saturn alone by flying just inside the rings during the final phase of its mission. The difference between the two measurements is expected to finally reveal the rings' true mass.

New Animation Takes a Colorful Flight Over Ceres (NASA)

A colorful new animation shows a simulated flight over the surface of dwarf planet Ceres, based on images from NASA's Dawn spacecraft.
The movie shows Ceres in enhanced color, which helps to highlight subtle differences in the appearance of surface materials. Scientists believe areas with shades of blue contain younger, fresher material, including flows, pits and cracks.
The animated flight over Ceres emphasizes the most prominent craters, such as Occator, and the tall, conical mountain Ahuna Mons. Features on Ceres are named for earthly agricultural spirits, deities and festivals.



Galaxy Clusters Reveal New Dark Matter Insights (NASA)

Dark matter is a mysterious cosmic phenomenon that accounts for 27 percent of all matter and energy. Though dark matter is all around us, we cannot see it or feel it. But scientists can infer the presence of dark matter by looking at how normal matter behaves around it.
Galaxy clusters, which consist of thousands of galaxies, are important for exploring dark matter because they reside in a region where such matter is much denser than average. Scientists believe that the heavier a cluster is, the more dark matter it has in its environment. But new research suggests the connection is more complicated than that.
"Galaxy clusters are like the large cities of our universe. In the same way that you can look at the lights of a city at night from a plane and infer its size, these clusters give us a sense of the distribution of the dark matter that we can't see," said Hironao Miyatake at NASA's Jet Propulsion Laboratory, Pasadena, California.
A new study in Physical Review Letters, led by Miyatake, suggests that the internal structure of a galaxy cluster is linked to the dark matter environment surrounding it. This is the first time that a property besides the mass of a cluster has been shown to be associated with surrounding dark matter.
Researchers studied approximately 9,000 galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog, and divided them into two groups by their internal structures: one in which the individual galaxies within clusters were more spread out, and one in which they were closely packed together. The scientists used a technique called gravitational lensing -- looking at how the gravity of clusters bends light from other objects -- to confirm that both groups had similar masses.
But when the researchers compared the two groups, they found an important difference in the distribution of galaxy clusters. Normally, galaxy clusters are separated from other clusters by 100 million light-years on average. But for the group of clusters with closely packed galaxies, there were fewer neighboring clusters at this distance than for the sparser clusters. In other words, the surrounding dark-matter environment determines how packed a cluster is with galaxies.
"This difference is a result of the different dark-matter environments in which the groups of clusters formed. Our results indicate that the connection between a galaxy cluster and surrounding dark matter is not characterized solely by cluster mass, but also its formation history," Miyatake said.
Study co-author David Spergel, professor of astronomy at Princeton University in New Jersey, added, "Previous observational studies had shown that the cluster's mass is the most important factor in determining its global properties. Our work has shown that 'age matters': Younger clusters live in different large-scale dark-matter environments than older clusters."
The results are in line with predictions from the leading theory about the origins of our universe. After an event called cosmic inflation, a period of less than a trillionth of a second after the big bang, there were small changes in the energy of space called quantum fluctuations. These changes then triggered a non-uniform distribution of matter. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.
"The connection between the internal structure of galaxy clusters and the distribution of surrounding dark matter is a consequence of the nature of the initial density fluctuations established before the universe was even one second old," Miyatake said.
Researchers will continue to explore these connections.
"Galaxy clusters are remarkable windows into the mysteries of the universe. By studying them, we can learn more about the evolution of large-scale structure of the universe, and its early history, as well as dark matter and dark energy," Miyatake said.

First glimpse of a black hole being born from a star’s remains (N6946-BH1)

Not too much detail so far but it does appear to have followed supernova light curve.


Link to article on New Scientist Web Site