Wednesday 15 December 2010

'Ice volcano' identified on Saturn's moon Titan


Scientists think they now have the best evidence yet for an ice volcano on Titan, the largest moon of Saturn.

The Cassini probe has spotted a 1,500m-high mountain with a deep pit in it, and what looks like a flow of material on the surrounding surface.

The new feature, which has been dubbed "The Rose", was seen with the probe's radar and infrared instruments.

Titan has long been speculated to have cryovolcanoes but its hazy atmosphere makes all observations very difficult.

Researchers are now wondering how active this mountain might be, and what sort of lava it could spew.

"Much of Titan's outer material is water-ice and ammonia, and so that's certainly one possible material that could melt at low temperatures and flow on the surface," explained Dr Randy Kirk, a Cassini radar team-member from the US Geological Survey (USGS).

"But there's a lot of organic material in the atmosphere, and deposited from the atmosphere, and maybe coming up from the interior in the form of these volcanoes. [This material could be] waxy or even plasticy," he told BBC News.

Dr Kirk was speaking here at the American Geophysical Union (AGU) Fall Meeting, the largest gathering of Earth scientists in the world.

There have been previous claims for ice volcanoes at Titan, but these have never won universal support. Scientists have continued to look however because it is considered an excellent candidate given its frigid conditions: the surface temperature is about minus 180 Celsius.

Dr Kirk and colleagues hope their new data will convince even their sternest critics that a positive identification has now finally been made.

The putative volcano is sited just south of Titan's equator in a sea of sand dunes referred to as Sotra Facula.


Titan's thick haze makes all observations at the moon extremely difficult The radar instrument on Cassini is able to see through the moon's haze and establish the local topography - scientists can build a 3D model of the ground. The infrared instrument on the probe, on the other hand, can gather some information on the variation in composition of the surface materials. Taken together, Dr Kirk's team says, the two views put forward a compelling case.

"We've seen a mountain that has a crater in, that flows of material coming out and spreading across the surface at some time in the past; and in fact when we looked in more detail in 3D we found that there was more than one volcano in this area. And that's actually very common in volcanic areas of the Earth and other planets."

Jeffrey Kargel, a planetary scientist at the University of Arizona, Tucson, is not connected with the Cassini mission. He told the meeting The Rose was the most likely volcano he had yet seen on Titan.

He said that if the lavas were rich in hydrocarbons, they could have the look of softened asphalt, candle wax or even polyethylene.

"There are many unanswered questions and intriguing possibilities," he told reporters.

"Is Sotra the source of Titan's atmospheric methane? Is cryovolcanism still active at Sotra or elsewhere on Titan? What is the cryovolcanic substance? Is cryovolcanism there explosive or quietly effusive? Might cryo-lavas have dredged up indications of fossils or chemical remains of sub-surface life?"

Thursday 2 December 2010

NASA Spacecraft Sees Cosmic Snow Storm During Comet Encounter





Motion of ice particles around the comet



PASADENA, Calif. -- The EPOXI mission's recent encounter with comet Hartley 2 provided the first images clear enough for scientists to link jets of dust and gas with specific surface features. NASA and other scientists have begun to analyze the images.

The EPOXI mission spacecraft revealed a cometary snow storm created by carbon dioxide jets spewing out tons of golf-ball to basketball-sized fluffy ice particles from the peanut-shaped comet's rocky ends. At the same time, a different process was causing water vapor to escape from the comet's smooth mid-section. This information sheds new light on the nature of comets and even planets.

Scientists compared the new data to data from a comet the spacecraft previously visited that was somewhat different from Hartley 2. In 2005, the spacecraft successfully released an impactor into the path of comet Tempel 1, while observing it during a flyby.

"This is the first time we've ever seen individual chunks of ice in the cloud around a comet or jets definitively powered by carbon dioxide gas," said Michael A'Hearn, principal investigator for the spacecraft at the University of Maryland. "We looked for, but didn't see, such ice particles around comet Tempel 1."

The new findings show Hartley 2 acts differently than Tempel 1 or the three other comets with nuclei imaged by spacecraft. Carbon dioxide appears to be a key to understanding Hartley 2 and explains why the smooth and rough areas scientists saw respond differently to solar heating, and have different mechanisms by which water escapes from the comet's interior.

"When we first saw all the specks surrounding the nucleus, our mouths dropped," said Pete Schultz, EPOXI mission co-investigator at Brown University. "Stereo images reveal there are snowballs in front and behind the nucleus, making it look like a scene in one of those crystal snow globes."

Data show the smooth area of comet Hartley 2 looks and behaves like most of the surface of comet Tempel 1, with water evaporating below the surface and percolating out through the dust. However, the rough areas of Hartley 2, with carbon dioxide jets spraying out ice particles, are very different.

"The carbon dioxide jets blast out water ice from specific locations in the rough areas resulting in a cloud of ice and snow," said Jessica Sunshine, EPOXI deputy principal investigator at the University of Maryland. "Underneath the smooth middle area, water ice turns into water vapor that flows through the porous material, with the result that close to the comet in this area we see a lot of water vapor."

Engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have been looking for signs ice particles peppered the spacecraft. So far they found nine times when particles, estimated to weigh slightly less than the mass of a snowflake, might have hit the spacecraft but did not damage it.

"The EPOXI mission spacecraft sailed through Hartley 2's ice flurries in fine working order and continues to take images as planned of this amazing comet," said Tim Larson, EPOXI project manager at JPL.

Scientists will need more detailed analysis to determine how long this snow storm has been active, and whether the differences in activity between the middle and ends of the comet are the result of how it formed some 4.5 billion years ago or are because of more recent evolutionary effects

Cassini Sees Saturn on a Cosmic Dimmer Switch




Like a cosmic lightbulb on a dimmer switch, Saturn emitted gradually less energy each year from 2005 to 2009, according to observations by NASA's Cassini spacecraft. But unlike an ordinary bulb, Saturn's southern hemisphere consistently emitted more energy than its northern one. On top of that, energy levels changed with the seasons and differed from the last time a spacecraft visited Saturn in the early 1980s. These never-before-seen trends came from a detailed analysis of long-term data from the composite infrared spectrometer (CIRS), an instrument built by NASA's Goddard Space Flight Center in Greenbelt, Md., as well as a comparison with earlier data from NASA's Voyager spacecraft. When combined with information about the energy coming to Saturn from the sun, the results could help scientists understand the nature of Saturn's internal heat source.

"The fact that Saturn actually emits more than twice the energy it absorbs from the sun has been a puzzle for many decades now," said Kevin Baines, a Cassini team scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and a co-author on a new paper about Saturn's energy output. "What generates that extra energy? This paper represents the first step in that analysis."

The research, reported this week in the Journal of Geophysical Research-Planets, was led by Liming Li of Cornell University in Ithaca, N.Y. (now at the University of Houston).

"The Cassini CIRS data are very valuable because they give us a nearly complete picture of Saturn," Li said. "This is the only single data set that provides so much information about this planet, and it's the first time that anybody has been able to study the power emitted by one of the giant planets in such detail."

The planets in our solar system lose energy in the form of heat radiation in wavelengths that are invisible to the human eye. The CIRS instrument picks up wavelengths in the thermal infrared region, far enough beyond red light where the wavelengths correspond to heat emission.

"In planetary science, we tend to think of planets as losing power evenly in all directions and at a steady rate," Li said. "Now we know Saturn is not doing that." (Power is the amount of energy emitted per unit of time.)

Instead, Saturn's flow of outgoing energy was lopsided, with its southern hemisphere giving off about one-sixth more energy than the northern one, Li explains. This effect matched Saturn's seasons: during those five Earth-years, it was summer in the southern hemisphere and winter in the northern one. (A season on Saturn lasts about seven Earth-years.) Like Earth, Saturn has these seasons because the planet is tilted on its axis, so one hemisphere receives more energy from the sun and experiences summer, while the other receives less energy and is shrouded in winter. Saturn's equinox, when the sun was directly over the equator, occurred in August 2009.

In the study, Saturn's seasons looked Earth-like in another way: in each hemisphere, its effective temperature, which characterizes its thermal emission to space, started to warm up or cool down as a change of season approached. The effective temperature provides a simple way to track the response of Saturn's atmosphere to the seasonal changes, which is complicated because Saturn's weather is variable and the atmosphere tends to retain heat. Cassini's observations revealed that the effective temperature in the northern hemisphere gradually dropped from 2005 to 2008 and started to warm up again by 2009. In the southern hemisphere, the effective temperature cooled from 2005 to 2009.

The emitted energy for each hemisphere rose and fell along with the effective temperature. Even so, during this five-year period, the planet as a whole seemed to be slowly cooling down and emitting less energy.

To find out if similar changes were happening one Saturn-year ago, the researchers looked at data collected by the Voyager spacecraft in 1980 and 1981 and did not see the imbalance between the southern and northern hemispheres. Instead, the two regions were much more consistent with each other.

Why wouldn't Voyager have seen the same summer-versus-winter difference between the two hemispheres? One explanation is that cloud patterns at depth could have fluctuated, blocking and scattering infrared light differently.

"It's reasonable to think that the changes in Saturn's emitted power are related to cloud cover," says Amy Simon-Miller, who heads the Planetary Systems Laboratory at Goddard and is a co-author on the paper. "As the amount of cloud cover changes, the amount of radiation escaping into space also changes. This might vary during a single season and from one Saturn-year to another. But to fully understand what is happening on Saturn, we will need the other half of the picture: the amount of power being absorbed by the planet."

Scientists will be doing that as a next step by comparing the instrument's findings to data obtained by Cassini's imaging cameras and infrared mapping spectrometer instrument. The spectrometer, in particular, measures the amount of sunlight reflected by Saturn. Because scientists know the total amount of solar energy delivered to Saturn, they can derive the amount of sunlight absorbed by the planet and discern how much heat the planet itself is emitting. These calculations help scientists tackle what the actual source of that warming might be and whether it changes.

Better understanding Saturn's internal heat flow "will significantly deepen our understanding of the weather, internal structure and evolution of Saturn and the other giant planets," Li said


NASA's Wide-field Infrared Survey Explorer, or WISE, has eyed its first cool brown dwarf: a tiny, ultra-cold star floating all alone in space.

WISE is scanning the whole sky in infrared light, picking up the glow of not just brown dwarfs but also asteroids, stars and galaxies. It has sent millions of images down to Earth, in which infrared light of different wavelengths is color-coded in the images.

"The brown dwarfs jump out at you like big, fat, green emeralds," said Amy Mainzer, the deputy project scientist of WISE at NASA's Jet Propulsion Laboratory in Pasadena, Calif. Mainzer, who makes jewelry in her spare time, explained that the brown dwarfs appear like green gems in WISE images because the methane in their atmospheres absorbs the infrared light that has been coded blue, and because they are too faint to give off the infrared light that is color-coded red. The only color left is green.

Like Jupiter, brown dwarfs are made up of gas -- a lot of it in the form of methane, hydrogen sulfide, and ammonia. These gases would be deadly to humans at the concentrations found around brown dwarfs. And they wouldn't exactly smell pretty.

"If you could bottle up a gallon of this object's atmosphere and bring it back to Earth, smelling it wouldn't kill you, but it would stink pretty badly -- like rotten eggs with a hint of ammonia," said Mainzer.

Mainzer and other members of the WISE team are already accumulating a quarry of brown dwarf candidates similar to this one. Brown dwarfs have masses somewhere between those of a star and a planet. They start out like stars as collapsing balls of gas, but they lack the mass to fuse atoms together at their core and shine with starlight. As time goes on, these lightweights cool off, until they can only be seen in infrared light. There could be many such objects lurking in the neighborhood of our sun, but astronomers know of only a handful so far. WISE is expected to find hundreds, including the coolest and closest of all.

To scientists, brown dwarfs represent the perfect laboratories for studying planet-like atmospheres.

"They're a great test of our understanding of atmospheric physics of planets, since they don't have solid surfaces, and there's no big, bright sun to get in the way," said co-author Michael Cushing, a postdoctoral fellow at JPL.

WISE's new brown dwarf is named WISEPC J045853.90+643451.9 for its location in the sky. It is estimated to be 18 to 30 light-years away and is one of the coolest brown dwarfs known, with a temperature of about 600 Kelvin, or 620 degrees Fahrenheit. That's downright chilly as far as stars go. The fact that this brown dwarf jumped out of the data so easily and so quickly -- it was spotted 57 days into the survey mission -- indicates that WISE will discover many, many more. The discovery was confirmed by follow-up observations at the University of Virginia's Fan Mountain telescope, the Large Binocular Telescope in southeastern Arizona, and NASA's Infrared Telescope Facility on Mauna Kea, Hawaii. The results are in press at the Astrophysical Journal

NASA EPOXI Flyby Reveals New Insights Into Comet Features





PASADENA, Calif. - NASA's EPOXI mission spacecraft successfully flew past comet Hartley 2 at 7 a.m. PDT (10 a.m. EDT) Thursday, Nov. 4. Scientists say initial images from the flyby provide new information about the comet's volume and material spewing from its surface.

"Early observations of the comet show that, for the first time, we may be able to connect activity to individual features on the nucleus," said EPOXI Principal Investigator Michael A'Hearn of the University of Maryland, College Park. "We certainly have our hands full. The images are full of great cometary data, and that's what we hoped for."

EPOXI is an extended mission that uses the already in-flight Deep Impact spacecraft. Its encounter phase with Hartley 2 began at 1 p.m. PDT (4 p.m. EDT) on Nov. 3, when the spacecraft began to point its two imagers at the comet's nucleus. Imaging of the nucleus began one hour later.

"The spacecraft has provided the most extensive observations of a comet in history," said Ed Weiler, associate administrator for NASA's Science Mission Directorate at the agency's headquarters in Washington. "Scientists and engineers have successfully squeezed world-class science from a re-purposed spacecraft at a fraction of the cost to taxpayers of a new science project."

Images from the EPOXI mission reveal comet Hartley 2 to have 100 times less volume than comet Tempel 1, the first target of Deep Impact. More revelations about Hartley 2 are expected as analysis continues.

Initial estimates indicate the spacecraft was about 700 kilometers (435 miles) from the comet at the closest-approach point. That's almost the exact distance that was calculated by engineers in advance of the flyby.

"It is a testament to our team's skill that we nailed the flyby distance to a comet that likes to move around the sky so much," said Tim Larson, EPOXI project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "While it's great to see the images coming down, there is still work to be done. We have another three weeks of imaging during our outbound journey."

The name EPOXI is a combination of the names for the two extended mission components: the Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft has retained the name "Deep Impact." In 2005, Deep Impact successfully released an impactor into the path of comet Tempel 1

NASA Mission Successfully Flies by Comet Hartley 2










PASADENA, CALIF. - NASA's EPOXI mission successfully flew by comet Hartley 2 at about 7 a.m. PDT (10 a.m. EDT) today, and the spacecraft has begun returning images. Hartley 2 is the fifth comet nucleus visited by a spacecraft.

Scientists and mission controllers are currently viewing never-before-seen images of Hartley 2 appearing on their computer terminal screens.

"The mission team and scientists have worked hard for this day," said Tim Larson, EPOXI project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It's good to see Hartley 2 up close."

Mission navigators are working to determine the spacecraft's closest approach distance. Preliminary estimates place the spacecraft close to the planned-for 700 kilometers (435 miles). Eight minutes after closest approach, at 6:59:47 a.m. PDT ( 9:59:47 a.m. EDT), the spacecraft's high-gain antenna was pointed at Earth and began downlinking vital spacecraft health and other engineering data stored aboard the spacecraft's onboard computer during the encounter. About 20 minutes later, the first images of the encounter made the 37-million-kilometer (23-million-mile) trip from the spacecraft to NASA's Deep Space Network antennas in Goldstone, Calif., appearing moments later on the mission's computer screens.

"We are all holding our breath to see what discoveries await us in the observations near closest approach," said EPOXI principal investigator Michael A'Hearn of the University of Maryland, College Park.

A post-encounter news conference will be held at 1 p.m. PDT (4 p.m. EDT) in the von Karman auditorium at JPL. It will be carried live on NASA TV. Downlink and schedule information is online at http://www.nasa.gov/ntv . The event will also be carried live on http://www.ustream.tv/nasajpl2 .

EPOXI is an extended mission that utilizes the already "in-flight" Deep Impact spacecraft to explore distinct celestial targets of opportunity. The name EPOXI itself is a combination of the names for the two extended mission components: the extrasolar planet observations, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft has retained the name "Deep Impact."tp://www.jpl.nasa.gov/images/epoxi/20101104/epoxi-5-slide.jpg

Cassini Sees Saturn Rings Oscillate Like Mini-Galaxy



Scientists believe they finally understand why one of the most dynamic regions in Saturn's rings has such an irregular and varying shape, thanks to images captured by NASA's Cassini spacecraft. And the answer, published online today in the Astronomical Journal, is this: The rings are behaving like a miniature version of our own Milky Way galaxy.

This new insight, garnered from images of Saturn's most massive ring, the B ring, may answer another long-standing question: What causes the bewildering variety of structures seen throughout the very densest regions of Saturn's rings?

Another finding from new images of the B ring's outer edge was the presence of at least two perturbed regions, including a long arc of narrow, shadow-casting peaks as high as 3.5 kilometers (2 miles) above the ring plane. The areas are likely populated with small moons that might have migrated across the outer part of the B ring in the past and got trapped in a zone affected by the moon Mimas' gravity. This process is commonly believed to have configured the present-day solar system.

"We have found what we hoped we'd find when we set out on this journey with Cassini nearly 13 years ago: visibility into the mechanisms that have sculpted not only Saturn's rings, but celestial disks of a far grander scale, from solar systems, like our own, all the way to the giant spiral galaxies," said Carolyn Porco, co-author on the new paper and Cassini imaging team lead, based at the Space Science Institute, Boulder, Colo.

New images and movies of the outer B ring edge can be found at http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov and http://ciclops.org .

Since NASA's Voyager spacecraft flew by Saturn in 1980 and 1981, scientists have known that the outer edge of the planet's B ring was shaped like a rotating, flattened football by the gravitational perturbations of Mimas. But it was clear, even in Voyager's findings, that the outer B ring's behavior was far more complex than anything Mimas alone might do.

Now, analysis of thousands of Cassini images of the B ring taken over a four-year period has revealed the source of most of the complexity: at least three additional, independently rotating wave patterns, or oscillations, that distort the B ring's edge. These oscillations, with one, two or three lobes, are not created by any moons. They have instead spontaneously arisen, in part because the ring is dense enough, and the B ring edge is sharp enough, for waves to grow on their own and then reflect at the edge.

"These oscillations exist for the same reason that guitar strings have natural modes of oscillation, which can be excited when plucked or otherwise disturbed," said Joseph Spitale, lead author on today's article and an imaging team associate at the Space Science Institute. "The ring, too, has its own natural oscillation frequencies, and that's what we're observing."

Astronomers believe such "self-excited" oscillations exist in other disk systems, like spiral disk galaxies and proto-planetary disks found around nearby stars, but they have not been able to directly confirm their existence. The new observations confirm the first large-scale wave oscillations of this type in a broad disk of material anywhere in nature.

Self-excited waves on small, 100-meter (300-foot) scales have been previously observed by Cassini instruments in a few dense ring regions and have been attributed to a process called "viscous overstability." In that process, the ring particles' small, random motions feed energy into a wave and cause it to grow. The new results confirm a Voyager-era predication that this same process can explain all the puzzling chaotic waveforms found in Saturn's densest rings, from tens of meters up to hundreds of kilometers wide.

"Normally viscosity, or resistance to flow, damps waves -- the way sound waves traveling through the air would die out," said Peter Goldreich, a planetary ring theorist at the California Institute of Technology in Pasadena. "But the new findings show that, in the densest parts of Saturn's rings, viscosity actually amplifies waves, explaining mysterious grooves first seen in images taken by the Voyager spacecraft."

The two perturbed B ring regions found orbiting within Mimas' zone of influence stretch along arcs up to 20,000 kilometers (12,000 miles) long. The longest one was first seen last year when the sun's low angle on the ring plane betrayed the existence of a series of tall structures through their long, spiky shadows. The small moons disturbing the material are probably hundreds of meters to possibly a kilometer or more in size.

Silica on a Mars Volcano Tells of Wet and Cozy Past



PASADENA, Calif. -- Light-colored mounds of a mineral deposited on a volcanic cone more than three billion years ago may preserve evidence of one of the most recent habitable microenvironments on Mars.

Observations by NASA's Mars Reconnaissance Orbiter enabled researchers to identify the mineral as hydrated silica and to see its volcanic context. The mounds' composition and their location on the flanks of a volcanic cone provide the best evidence yet found on Mars for an intact deposit from a hydrothermal environment -- a steam fumarole, or hot spring. Such environments may have provided habitats for some of Earth's earliest life forms.

"The heat and water required to create this deposit probably made this a habitable zone," said J.R. Skok of Brown University, Providence, R.I., lead author of a paper about these findings published online today by Nature Geoscience. "If life did exist there, this would be a promising type of deposit to entomb evidence of it -- a microbial mortuary."

No studies have yet determined whether Mars has ever supported life. The new results add to accumulating evidence that, at some times and in some places, Mars has had favorable environments for microbial life. This specific place would have been habitable when most of Mars was already dry and cold. Concentrations of hydrated silica have been identified on Mars previously, including a nearly pure patch found by NASA's Mars Exploration Rover Spirit in 2007. However, none of those earlier findings were in such an intact setting as this one, and the setting adds evidence about the origin.

Skok said, "You have spectacular context for this deposit. It's right on the flank of a volcano. The setting remains essentially the same as it was when the silica was deposited."

The small cone rises about 100 meters (100 yards) from the floor of a shallow bowl named Nili Patera. The patera, which is the floor of a volcanic caldera, spans about 50 kilometers (30 miles) in the Syrtis Major volcanic region of equatorial Mars. Before the cone formed, free-flowing lava blanketed nearby plains. The collapse of an underground magma chamber from which lava had emanated created the bowl. Subsequent lava flows, still with a runny texture, coated the floor of Nili Patera. The cone grew from even later flows, apparently after evolution of the underground magma had thickened its texture so that the erupted lava would mound up.

"We can read a series of chapters in this history book and know that the cone grew from the last gasp of a giant volcanic system," said John Mustard, Skok's thesis advisor at Brown and a co-author of the paper. "The cooling and solidification of most of the magma concentrated its silica and water content."

Observations by cameras on the Mars Reconnaissance Orbiter revealed patches of bright deposits near the summit of the cone, fanning down its flank, and on flatter ground in the vicinity. The Brown researchers partnered with Scott Murchie of Johns Hopkins University Applied Physics Laboratory, Laurel, Md., to analyze the bright exposures with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the orbiter.

Silica can be dissolved, transported and concentrated by hot water or steam. Hydrated silica identified by the spectrometer in uphill locations -- confirmed by stereo imaging -- indicates that hot springs or fumaroles fed by underground heating created these deposits. Silica deposits around hydrothermal vents in Iceland are among the best parallels on Earth.

Murchie said, "The habitable zone would have been within and alongside the conduits carrying the heated water." The volcanic activity that built the cone in Nili Patera appears to have happened more recently than the 3.7-billion-year or greater age of Mars' potentially habitable early wet environments recorded in clay minerals identified from orbit.

Study Links Fresh Mars Gullies to Carbon Dioxide


PASADENA, Calif. -- A growing bounty of images from NASA's Mars Reconnaissance Orbiter reveals that the timing of new activity in one type of the enigmatic gullies on Mars implicates carbon-dioxide frost, rather than water, as the agent causing fresh flows of sand.

Researchers have tracked changes in gullies on faces of sand dunes in seven locations on southern Mars. The periods when changes occurred, as determined by comparisons of before-and-after images, overlapped in all cases with the known winter build-up of carbon-dioxide frost on the dunes. Before-and-after pairs that covered periods only in spring, summer and autumn showed no new activity in those seasons.

"Gullies that look like this on Earth are caused by flowing water, but Mars is a different planet with its own mysteries," said Serina Diniega, lead author of a report on these findings in the November issue of the journal Geology. She analyzed these gullies while a graduate student at the University of Arizona, Tucson, and recently joined NASA's Jet Propulsion Laboratory, Pasadena. "The timing we see points to carbon dioxide, and if the mechanism is linked to carbon-dioxide frost at these dune gullies, the same could be true for other gullies on Mars."

Scientists have suggested various explanations for modern gullies on Mars since fresh-looking gullies were discovered in images from NASA's Mars Global Surveyor in 2000. Some of the proposed mechanisms involve water, some carbon dioxide, and some neither.

Some fresh gullies are on sand dunes, commonly starting at a crest. Others are on rockier slopes, such as the inner walls of craters, sometimes starting partway down the slope.

Diniega and co-authors at the University of Arizona and Johns Hopkins University Applied Physics Laboratory, Laurel, Md., focused their study on dune gullies that are shaped like rockier slope gullies, with an alcove at the top, a channel or multiple channels in the middle, and an apron at the bottom. The 18 dune gullies in which the researchers observed new activity range in size from about 50 meters or yards long to more than 3 kilometers (2 miles) long.

"The alcove is a cutout at the top," Diniega said. "Material being removed from there ends up in a fan-shaped apron below."

Because new flows in these gullies apparently occur in winter, rather than at a time when any frozen water might be most likely to melt, the new report calls for studies of how carbon dioxide, rather than water, could be involved in the flows. Some carbon dioxide from the Martian atmosphere freezes on the ground during winter and sublimates back to gaseous form as spring approaches. The dunes studied are poleward of 40 degrees south latitude.

"One possibility is that a pile of carbon-dioxide frost accumulating on a dune gets thick enough to avalanche down and drag other material with it," Diniega said. Other suggested mechanisms are that gas from sublimating frost could lubricate a flow of dry sand or erupt in puffs energetic enough to trigger slides.

At an increasing number of sites, before-and-after images have documented changes in Martian gullies. The new report uses images from the Mars Orbiter Camera on Mars Global Surveyor, which operated from 1997 to 2006, and from the High Resolution Science Imaging Experiment (HiRISE) camera and Context Camera on Mars Reconnaissance Orbiter, which has been examining Mars since 2006.

"The Mars Reconnaissance Orbiter is enabling valuable studies of seasonal changes in surface features on Mars," said Sue Smrekar of NASA's Jet Propulsion Laboratory, Pasadena, Calif., deputy project scientist for this orbiter. "One key to doing that has been the capability to point from side to side, so that priority targets can be checked more frequently than just when the spacecraft flies directly overhead. Another is the lengthening span of years covered by first Mars Global Surveyor and now this mission."

NASA Survey Suggests Earth-Sized Planets are Common



PASADENA, Calif. -- Nearly one in four stars similar to the sun may host planets as small as Earth, according to a new study funded by NASA and the University of California.

The study is the most extensive and sensitive planetary census of its kind. Astronomers used the W.M. Keck Observatory in Hawaii for five years to search 166 sun-like stars near our solar system for planets of various sizes, ranging from three to 1,000 times the mass of Earth. All of the planets in the study orbit close to their stars. The results show more small planets than large ones, indicating small planets are more prevalent in our Milky Way galaxy.

"We studied planets of many masses -- like counting boulders, rocks and pebbles in a canyon -- and found more rocks than boulders, and more pebbles than rocks. Our ground-based technology can't see the grains of sand, the Earth-size planets, but we can estimate their numbers," said Andrew Howard of the University of California, Berkeley, lead author of the new study. "Earth-size planets in our galaxy are like grains of sand sprinkled on a beach -- they are everywhere."

The study appears in the Oct. 29 issue of the journal Science.

The research provides a tantalizing clue that potentially habitable planets could also be common. These hypothesized Earth-size worlds would orbit farther away from their stars, where conditions could be favorable for life. NASA's Kepler spacecraft is also surveying sun-like stars for planets and is expected to find the first true Earth-like planets in the next few years.

Howard and his planet-hunting team, which includes principal investigator Geoff Marcy, also of the University of California, Berkeley, looked for planets within 80-light-years of Earth, using the radial velocity, or "wobble," technique.

They measured the numbers of planets falling into five groups, ranging from 1,000 times the mass of Earth, or about three times the mass of Jupiter, down to three times the mass of Earth. The search was confined to planets orbiting close to their stars -- within 0.25 astronomical units, or a quarter of the distance between our sun and Earth.

A distinct trend jumped out of the data: smaller planets outnumber larger ones. Only 1.6 percent of stars were found to host giant planets orbiting close in. That includes the three highest-mass planet groups in the study, or planets comparable to Saturn and Jupiter. About 6.5 percent of stars were found to have intermediate-mass planets, with 10 to 30 times the mass of Earth -- planets the size of Neptune and Uranus. And 11.8 percent had the so-called "super-Earths," weighing in at only three to 10 times the mass of Earth.

"During planet formation, small bodies similar to asteroids and comets stick together, eventually growing to Earth-size and beyond. Not all of the planets grow large enough to become giant planets like Saturn and Jupiter," Howard said. "It's natural for lots of these building blocks, the small planets, to be left over in this process."

The astronomers extrapolated from these survey data to estimate that 23 percent of sun-like stars in our galaxy host even smaller planets, the Earth-sized ones, orbiting in the hot zone close to a star. "This is the statistical fruit of years of planet-hunting work," said Marcy. "The data tell us that our galaxy, with its roughly 200 billion stars, has at least 46 billion Earth-size planets, and that's not counting Earth-size planets that orbit farther away from their stars in the habitable zone."

The findings challenge a key prediction of some theories of planet formation. Models predict a planet "desert" in the hot-zone region close to stars, or a drop in the numbers of planets with masses less than 30 times that of Earth. This desert was thought to arise because most planets form in the cool, outer region of solar systems, and only the giant planets were thought to migrate in significant numbers into the hot inner region. The new study finds a surplus of close-in, small planets where theories had predicted a scarcity.

"We are at the cusp of understanding the frequency of Earth-sized planets among planetary systems in the solar neighborhood," said Mario R. Perez, Keck program scientist at NASA Headquarters in Washington. "This work is part of a key NASA science program and will stimulate new theories to explain the significance and impact of these findings."

NASA Trapped Mars Rover Finds Evidence of Subsurface Water

PASADENA, Calif. -- The ground where NASA's Mars Exploration Rover Spirit became stuck last year holds evidence that water, perhaps as snow melt, trickled into the subsurface fairly recently and on a continuing basis.

Stratified soil layers with different compositions close to the surface led the rover science team to propose that thin films of water may have entered the ground from frost or snow. The seepage could have happened during cyclical climate changes in periods when Mars tilted farther on its axis. The water may have moved down into the sand, carrying soluble minerals deeper than less soluble ones. Spin-axis tilt varies over timescales of hundreds of thousands of years.

The relatively insoluble minerals near the surface include what is thought to be hematite, silica and gypsum. Ferric sulfates, which are more soluble, appear to have been dissolved and carried down by water. None of these minerals are exposed at the surface, which is covered by wind-blown sand and dust.

"The lack of exposures at the surface indicates the preferential dissolution of ferric sulfates must be a relatively recent and ongoing process since wind has been systematically stripping soil and altering landscapes in the region Spirit has been examining," said Ray Arvidson of Washington University in St. Louis, deputy principal investigator for the twin rovers Spirit and Opportunity.

Analysis of these findings appears in a report in the Journal of Geophysical Research published by Arvidson and 36 co-authors about Spirit's operations from late 2007 until just before the rover stopped communicating in March.

The twin Mars rovers finished their three-month prime missions in April 2004, then kept exploring in bonus missions. One of Spirit's six wheels quit working in 2006.

In April 2009, Spirit's left wheels broke through a crust at a site called "Troy" and churned into soft sand. A second wheel stopped working seven months later. Spirit could not obtain a position slanting its solar panels toward the sun for the winter, as it had for previous winters. Engineers anticipated it would enter a low-power, silent hibernation mode, and the rover stopped communicating March 22. Spring begins next month at Spirit's site, and NASA is using the Deep Space Network and the Mars Odyssey orbiter to listen if the rover reawakens.

Researchers took advantage of Spirit's months at Troy last year to examine in great detail soil layers the wheels had exposed, and also neighboring surfaces. Spirit made 13 inches of progress in its last 10 backward drives before energy levels fell too low for further driving in February. Those drives exposed a new area of soil for possible examination if Spirit does awaken and its robotic arm is still usable.

"With insufficient solar energy during the winter, Spirit goes into a deep-sleep hibernation mode where all rover systems are turned off, including the radio and survival heaters," said John Callas, project manager for Spirit and Opportunity at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "All available solar array energy goes into charging the batteries and keeping the mission clock running."

The rover is expected to have experienced temperatures colder than it has ever before, and it may not survive. If Spirit does get back to work, the top priority is a multi-month study that can be done without driving the rover. The study would measure the rotation of Mars through the Doppler signature of the stationary rover's radio signal with enough precision to gain new information about the planet's core. The rover Opportunity has been making steady progress toward a large crater, Endeavour, which is now approximately 8 kilometers (5 miles) away.

Spirit, Opportunity, and other NASA Mars missions have found evidence of wet Martian environments billions of years ago that were possibly favorable for life. The Phoenix Mars Lander in 2008 and observations by orbiters since 2002 have identified buried layers of water ice at high and middle latitudes and frozen water in polar ice caps. These newest Spirit findings contribute to an accumulating set of clues that Mars may still have small amounts of liquid water at some periods during ongoing climate cycles

Large Carbon Structures (Buckyballs) Thrive

PASADENA, Calif. -- Astronomers have discovered bucket loads of buckyballs in space. They used NASA's Spitzer Space Telescope to find the little carbon spheres throughout our Milky Way galaxy -- in the space between stars and around three dying stars. What's more, Spitzer detected buckyballs around a fourth dying star in a nearby galaxy in staggering quantities -- the equivalent in mass to about 15 of our moons.

Buckyballs, also known as fullerenes, are soccer-ball-shaped molecules consisting of 60 linked carbon atoms. They are named for their resemblance to the architect Buckminster Fuller's geodesic domes, an example of which is found at the entrance to Disney's Epcot theme park in Orlando, Fla. The miniature spheres were first discovered in a lab on Earth 25 years ago, but it wasn't until this past July that Spitzer was able to provide the first confirmed proof of their existence in space. At that time, scientists weren't sure if they had been lucky to find a rare supply, or if perhaps the cosmic balls were all around.

"It turns out that buckyballs are much more common and abundant in the universe than initially thought," said astronomer Letizia Stanghellini of the National Optical Astronomy Observatory in Tucson, Ariz. "Spitzer had recently found them in one specific location, but now we see them in other environments. This has implications for the chemistry of life. It's possible that buckyballs from outer space provided seeds for life on Earth."

Stanghellini is co-author of a new study appearing online Oct. 28 in the Astrophysical Journal Letters. Anibal García-Hernández of the Instituto de Astrofísica de Canarias, Spain, is the lead author of the paper. Another Spitzer study about the discovery of buckyballs in space was also recently published in the Astrophysical Journal Letters. It was led by Kris Sellgren of Ohio State University, Columbus.

The García-Hernández team found the buckyballs around three dying sun-like stars, called planetary nebulae, in our own Milky Way galaxy. These cloudy objects, made up of material shed from the dying stars, are similar to the one where Spitzer found the first evidence for their existence.

The new research shows that all the planetary nebulae in which buckyballs have been detected are rich in hydrogen. This goes against what researchers thought for decades -- they had assumed that, as is the case with making buckyballs in the lab, hydrogen could not be present. The hydrogen, they theorized, would contaminate the carbon, causing it to form chains and other structures rather than the spheres, which contain no hydrogen at all. "We now know that fullerenes and hydrogen coexist in planetary nebulae, which is really important for telling us how they form in space," said García-Hernández.

García-Hernández and his colleagues also located buckyballs in a planetary nebula within a nearby galaxy called the Small Magellanic Cloud. This was particularly exciting to the researchers, because, in contrast to the planetary nebulae in the Milky Way, the distance to this galaxy is known. Knowing the distance to the source of the buckyballs meant that the astronomers could calculate their quantity -- twenty percent of Earth's mass, or the mass of 15 of our moons.

The other new study, from Sellgren and her team, demonstrates that buckyballs are also present in the space between stars, but not too far away from young solar systems. The cosmic balls may have been formed in a planetary nebula, or perhaps between stars. A feature story about this research is online at http://www.spitzer.caltech.edu/news/1212-feature10-18 .

"It’s exciting to find buckyballs in between stars that are still forming their solar systems, just a comet’s throw away," Sellgren said. "This could be the link between fullerenes in space and fullerenes in meteorites."

The implications are far-reaching. Scientists have speculated in the past that buckyballs, which can act like cages for other molecules and atoms, might have carried substances to Earth that kick-started life. Evidence for this theory comes from the fact that buckyballs have been found in meteorites carrying extraterrestial gases.

"Buckyballs are sort of like diamonds with holes in the middle," said Stanghellini. "They are incredibly stable molecules that are hard to destroy, and they could carry other interesting molecules inside them. We hope to learn more about the important role they likely play in the death and birth of stars and planets, and maybe even life itself."

The little carbon balls are important in technology research too. They have potential applications in superconducting materials, optical devices, medicines, water purification, armor and more