Tuesday 4 May 2010

Small, Ground-Based Telescope Images Three Exoplanets


PASADENA, Calif. -- Astronomers have snapped a picture of three planets orbiting a star beyond our own using a modest-sized telescope on the ground. The surprising feat was accomplished by a team at NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a small portion of the Palomar Observatory's Hale Telescope, north of San Diego.

The planets had been imaged previously by two of the world's biggest ground-based telescopes -- one of the two 10-meter (33-foot) telescopes of W.M. Keck Observatory and the 8.0-meter (26-foot) Gemini North Observatory, both on Mauna Kea in Hawaii. The planets, which orbit the star HR 8799, were among the very first to be directly imaged, a discovery announced in Nov. of 2008.

The new image of the planets, taken in infrared light as before, was captured using just a 1.5-meter-diameter (4.9-foot) portion of the Hale telescope's mirror. The astronomy team took painstaking efforts to push current technology to the point where such a small mirror could be used. They combined two techniques -- adaptive optics and a coronagraph -- to minimize the glare from the star and reveal the dim glow of the much fainter planets.

The picture is online at http://www.nasa.gov/topics/universe/features/exoplanet20100414-a.html.

"Our technique could be used on larger ground-based telescopes to image planets that are much closer to their stars, or it could be used on small space telescopes to find possible Earth-like worlds near bright stars," said Gene Serabyn, an astrophysicist at JPL and visiting associate in physics at the California Institute of Technology in Pasadena. Serabyn is lead author of a report on the findings in the April 15 issue of the journal Nature.

The three planets, called HR8799b, c and d, are thought to be gas giants similar to Jupiter, but more massive. They orbit their host star at roughly 24, 38 and 68 times the distance between our Earth and sun, respectively (our Jupiter resides at about five times the Earth-sun distance). It's possible that rocky worlds like Earth circle closer to the planets' star, but with current technology, they would be impossible to see under the star's glare.

The star HR 8799 is a bit more massive than our sun, and much younger, at about 60 million years, compared to our sun's approximately 4.6 billion years. It is 120 light-years away in the constellation Pegasus. This star's planetary system is still active, with bodies crashing together and kicking up dust, as recently detected by NASA's Spitzer Space Telescope (http://spitzer.caltech.edu/news/1000-feature09-16-Unsettled-Youth-Spitzer-Observes-a-Chaotic-Planetary-System). Like fresh-baked bread out of the oven, the planets are still warm from their formation and emit enough infrared radiation for telescopes to see.

To take a picture of HR 8799's planets, Serabyn and his colleagues first used a method called adaptive optics to reduce the amount of atmospheric blurring, or to take away the "twinkle" of the star. This technique was optimized by using only a small piece of the telescope. Once the twinkle was removed, the light from the star itself was blocked using the team's coronograph, an instrument that selectively masks out the star. A novel "vortex coronagraph," invented by team member Dimitri Mawet of JPL, was used for this step. The final result was an image showing the light of three planets.

"The trick is to suppress the starlight without suppressing the planet light," said Serabyn.

The technique can be used to image the space lying just fractions of a degree from a star (about one degree divided by roughly 10,000). This is as close to the star as that achieved by Gemini and Keck -- telescopes that are about five and seven times larger, respectively.

Flash: NASA's Cassini Sees Lightning on Saturn


ASADENA, Calif. – NASA's Cassini spacecraft has captured images of lightning on Saturn. The images have allowed scientists to create the first movie showing lightning flashing on another planet.

After waiting years for Saturn to dim enough for the spacecraft's cameras to detect bursts of light, scientists were able to create the movie, complete with a soundtrack that features the crackle of radio waves emitted when lightning bolts struck.

"This is the first time we have the visible lightning flash together with the radio data," said Georg Fischer, a radio and plasma wave science team associate based at the Space Research Institute in Graz, Austria. "Now that the radio and visible light data line up, we know for sure we are seeing powerful lightning storms."

The movie and radio data suggest extremely powerful storms with lightning that flashes as brightly as the brightest super-bolts on Earth, according to Andrew Ingersoll, a Cassini imaging science subsystem team member at the California Institute of Technology in Pasadena. "What's interesting is that the storms are as powerful -- or even more powerful -- at Saturn as on Earth," said Ingersoll. "But they occur much less frequently, with usually only one happening on the planet at any given time, though it can last for months."

The first images of the lightning were captured in August 2009, during a storm that churned from January to October 2009 and lasted longer than any other observed lightning storm in the solar system. Results are described in an article accepted for publication in the journal Geophysical Research Letters.

To make a video, scientists needed more pictures with brighter lightning and strong radio signals. Data were collected during a shorter subsequent storm, which occurred from November through mid-December 2009. The frames in the video were obtained over 16 minutes on Nov. 30, 2009. The flashes lasted less than one second. The images show a cloud as long as 3,000 kilometers (1,900 miles) across and regions illuminated by lightning flashes about 300 kilometers (190 miles) in diameter. Scientists use the width of the flashes to gauge the depth of the lightning below the cloud tops.

When lightning strikes on Earth and on Saturn, it emits radio waves at a frequency that can cause static on an AM radio. The sounds in the video approximate that static sound, based on Saturn electrostatic discharge signals detected by Cassini's radio and plasma wave science instrument.

Cassini, launched in 1997, and NASA's Voyager mission, launched in 1977, had previously captured radio emissions from storms on Saturn. A belt around the planet where Cassini has detected radio emissions and bright, convective clouds earned the nickname "storm alley." Cassini's cameras, however, had been unable to get pictures of lightning flashing.

Since Cassini's arrival at Saturn in 2004, it has been difficult to see the lightning because the planet is very bright and reflective. Sunlight shining off Saturn's enormous rings made even the night side of Saturn brighter than a full-moon night on Earth. Equinox, the period around August 2009 when the sun shone directly over the planet's equator, finally brought the needed darkness. During equinox, the sun lit the rings edge-on only and left the bulk of the rings in shadow.

Seeing lightning was another highlight of the equinox period, which already enabled scientists to see clumps in the rings as high as the Rocky Mountains.

"The visible-light images tell us a lot about the lightning," said Ulyana Dyudina, a Cassini imaging team associate based at Caltech, who was the first to see the flashes. "Now we can begin to measure how powerful these storms are, where they form in the cloud layer and how the optical intensity relates to the total energy of the thunderstorms."

'This Planet Tastes Funny,' According to Spitzer

PASADENA, Calif. - NASA's Spitzer Space Telescope has discovered something odd about a distant planet -- it lacks methane, an ingredient common to many of the planets in our solar system.

"It's a big puzzle," said Kevin Stevenson, a planetary sciences graduate student at the University of Central Florida in Orlando, lead author of a study appearing tomorrow, April 22 in the journal Nature. "Models tell us that the carbon in this planet should be in the form of methane. Theorists are going to be quite busy trying to figure this one out."

The discovery brings astronomers one step closer to probing the atmospheres of distant planets the size of Earth. The methane-free planet, called GJ 436b, is about the size of Neptune, making it the smallest distant planet that any telescope has successfully "tasted," or analyzed. Eventually, a larger space telescope could use the same kind of technique to search smaller, Earth-like worlds for methane and other chemical signs of life, such as water, oxygen and carbon dioxide.

"Ultimately, we want to find biosignatures on a small, rocky world. Oxygen, especially with even a little methane, would tell us that we humans might not be alone," said Stevenson.

"In this case, we expected to find methane not because of the presence of life, but because of the planet's chemistry. This type of planet should have cooked up methane. It's like dipping bread into beaten eggs, frying it, and getting oatmeal in the end," said Joseph Harrington of the University of Central Florida, the principal investigator of the research.

Methane is present on our life-bearing planet, manufactured primarily by microbes living in cows and soaking in waterlogged rice fields. All of the giant planets in our solar system have methane too, despite their lack of cows. Neptune is blue because of this chemical, which absorbs red light. Methane is a common ingredient of relatively cool bodies, including "failed" stars, which are called brown dwarfs.

In fact, any world with the common atmospheric mix of hydrogen, carbon and oxygen, and a temperature up to 1,000 Kelvin (1,340 degrees Fahrenheit) is expected to have a large amount of methane and a small amount of carbon monoxide. The carbon should "prefer" to be in the form of methane at these temperatures.

At 800 Kelvin (or 980 degrees Fahrenheit), GJ 436b is supposed to have abundant methane and little carbon monoxide. Spitzer observations have shown the opposite. The space telescope has captured the planet's light in six infrared wavelengths, showing evidence for carbon monoxide but not methane.

"We're scratching our heads," said Harrington. "But what this does tell us is that there is room for improvement in our models. Now we have actual data on faraway planets that will teach us what's really going on in their atmospheres."

GJ 436b is located 33 light-years away in the constellation Leo, the Lion. It rides in a tight, 2.64-day orbit around its small star, an "M-dwarf" much cooler than our sun. The planet transits, or crosses in front of, its star as viewed from Earth.

Spitzer was able to detect the faint glow of GJ 436b by watching it slip behind its star, an event called a secondary eclipse. As the planet disappears, the total light observed from the star system drops -- this drop is then measured to find the brightness of the planet at various wavelengths. The technique, first pioneered by Spitzer in 2005, has since been used to measure atmospheric components of several Jupiter-sized exoplanets, the so-called "hot Jupiters," and now the Neptune-sized GJ 436b.

"The Spitzer technique is being pushed to smaller, cooler planets more like our Earth than the previously studied hot Jupiters," said Charles Beichman, director of NASA's Exoplanet Science Institute at NASA's Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, Calif. "In coming years, we can expect that a space telescope could characterize the atmosphere of a rocky planet a few times the size of the Earth. Such a planet might show signposts of life."

This research was performed before Spitzer ran out of its liquid coolant in May 2009, officially beginning its "warm" mission

Planck Sees a Cold and Stormy Orion


The big hunter in the sky is seen in a new light by Planck, a European Space Agency mission with significant NASA participation. The long-wavelength image shows most of the constellation Orion, highlighting turbid clouds of cold material, where new stars are being stirred into existence.

The Planck mission is busy surveying the whole sky at longer wavelengths of light than we can see with our eyes, ranging from infrared to even longer-wavelength microwaves. It is collecting ancient light from when the universe was very young, less than half a million years old, telling us about the birth and fate of our universe. In the process, the mission is gathering data on our Milky Way galaxy that astronomers are using to see through cold pools of gas and dust, which block visible-light views of star formation.

The new image is online at: http://www.nasa.gov/mission_pages/planck/planckorion20100426.html. It shows one such region in our Milky Way, where stars are actively bursting to life. The much-photographed Orion nebula is the bright spot to the lower center. The bright spot to the right of center is around the Horsehead Nebula, so called because at high magnifications a pillar of dust resembles a horse's head. The whole view covers a square patch of sky equivalent to 26 by 26 moons.

"Because Planck is mapping the whole sky, we can capture mosaics of huge regions of the Milky Way," said Charles Lawrence, the NASA project scientist for Planck at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We are seeing the coldest material in star-forming regions, where stars are at the very earliest stages of formation."

The giant red arc of Barnard's Loop is thought to be the blast wave from a star that blew up inside the region about two million years ago. The bubble it created is now about 300 light-years across.

The picture shows light resulting from two different types of sources. At the lowest frequencies, Planck primarily maps emission from ionized gas heated by newly formed hot stars. At higher frequencies, Planck maps the meager heat emitted by extremely cold dust. This can reveal the coldest cores in the clouds, which are approaching the final stages of collapse, before they are reborn as full-fledged stars.

Another new image from Planck shows a similar, yet less vigorous star-forming area called Perseus. It is online at: http://www.nasa.gov/mission_pages/planck/planckperseus20100426.html .

Storm on Saturn


With the help of amateur astronomers, the composite infrared spectrometer instrument aboard NASA's Cassini spacecraft has taken its first look at a massive blizzard in Saturn's atmosphere. The instrument collected the most detailed data to date of temperatures and gas distribution in that planet's storms.

The data showed a large, turbulent storm, dredging up loads of material from the deep atmosphere and covering an area at least five times larger than the biggest blizzard in this year's Washington, D.C.-area storm front nicknamed "Snowmageddon."

"We were so excited to get a heads-up from the amateurs," said Gordon Bjoraker, a composite infrared spectrometer team member based at NASA's Goddard Space Flight Center in Greenbelt, Md. Normally, he said, "Data from the storm cell would have been averaged out."

Cassini's radio and plasma wave instrument and imaging cameras have been tracking thunder and lightning storms on Saturn for years in a band around Saturn's mid-latitudes nicknamed "storm alley." But storms can come and go on a time scale of weeks, while Cassini's imaging and spectrometer observations have to be locked in place months in advance.

The radio and plasma wave instrument regularly picks up electrostatic discharges associated with the storms, so team members have been sending periodic tips to amateur astronomers, who can quickly go to their backyard telescopes and try to see the bright convective storm clouds. Amateur astronomers including Anthony Wesley, Trevor Barry and Christopher Go got one of those notices in February and were able to take dozens of pictures over the next several weeks.

In late March, Wesley, an amateur astronomer from Australia who was actually the first person to detect the new dark spot caused by an impact on Jupiter last summer, sent Cassini scientists an e-mail with a picture of the storm.

"I wanted to be sure that images like these were being seen by the Cassini team just in case this was something of interest to be imaged directly by Cassini or the Hubble Space Telescope," Wesley wrote.

Cassini scientists eagerly pored through the images, including a picture of the storm at its peak on March 13 by Go, who lives in the Philippines.

By a stroke of luck, the composite infrared spectrometer happened to be targeting the latitude of the storms. The instrument's scientists knew there could be storms there, but didn't know when they might be active.

Data obtained by the spectrometer on March 25 and 26 showed larger than expected amounts of phosphine, a gas typically found in Saturn's deep atmosphere and an indicator that powerful currents were dredging material upward into the upper troposphere. The spectrometer data also showed another signature of the storm: the tropopause, the dividing line between the serene stratosphere and the lower, churning troposphere, was about 0.5 Kelvin (1 degree Fahrenheit) colder in the storm cell than in neighboring areas.

"A balloonist floating about 100 kilometers down from the bottom of Saturn's calm stratosphere would experience an ammonia-ice blizzard with the intensity of Snowmageddon," said Brigette Hesman, a composite infrared spectrometer team member who is an assistant research scientist at the University of Maryland. "These blizzards appear to be powered by violent storms deeper down - perhaps another 100 to 200 kilometers down - where lightning has been observed and the clouds are made of water and ammonia."