Wednesday 15 December 2010

'Ice volcano' identified on Saturn's moon Titan


Scientists think they now have the best evidence yet for an ice volcano on Titan, the largest moon of Saturn.

The Cassini probe has spotted a 1,500m-high mountain with a deep pit in it, and what looks like a flow of material on the surrounding surface.

The new feature, which has been dubbed "The Rose", was seen with the probe's radar and infrared instruments.

Titan has long been speculated to have cryovolcanoes but its hazy atmosphere makes all observations very difficult.

Researchers are now wondering how active this mountain might be, and what sort of lava it could spew.

"Much of Titan's outer material is water-ice and ammonia, and so that's certainly one possible material that could melt at low temperatures and flow on the surface," explained Dr Randy Kirk, a Cassini radar team-member from the US Geological Survey (USGS).

"But there's a lot of organic material in the atmosphere, and deposited from the atmosphere, and maybe coming up from the interior in the form of these volcanoes. [This material could be] waxy or even plasticy," he told BBC News.

Dr Kirk was speaking here at the American Geophysical Union (AGU) Fall Meeting, the largest gathering of Earth scientists in the world.

There have been previous claims for ice volcanoes at Titan, but these have never won universal support. Scientists have continued to look however because it is considered an excellent candidate given its frigid conditions: the surface temperature is about minus 180 Celsius.

Dr Kirk and colleagues hope their new data will convince even their sternest critics that a positive identification has now finally been made.

The putative volcano is sited just south of Titan's equator in a sea of sand dunes referred to as Sotra Facula.


Titan's thick haze makes all observations at the moon extremely difficult The radar instrument on Cassini is able to see through the moon's haze and establish the local topography - scientists can build a 3D model of the ground. The infrared instrument on the probe, on the other hand, can gather some information on the variation in composition of the surface materials. Taken together, Dr Kirk's team says, the two views put forward a compelling case.

"We've seen a mountain that has a crater in, that flows of material coming out and spreading across the surface at some time in the past; and in fact when we looked in more detail in 3D we found that there was more than one volcano in this area. And that's actually very common in volcanic areas of the Earth and other planets."

Jeffrey Kargel, a planetary scientist at the University of Arizona, Tucson, is not connected with the Cassini mission. He told the meeting The Rose was the most likely volcano he had yet seen on Titan.

He said that if the lavas were rich in hydrocarbons, they could have the look of softened asphalt, candle wax or even polyethylene.

"There are many unanswered questions and intriguing possibilities," he told reporters.

"Is Sotra the source of Titan's atmospheric methane? Is cryovolcanism still active at Sotra or elsewhere on Titan? What is the cryovolcanic substance? Is cryovolcanism there explosive or quietly effusive? Might cryo-lavas have dredged up indications of fossils or chemical remains of sub-surface life?"

Thursday 2 December 2010

NASA Spacecraft Sees Cosmic Snow Storm During Comet Encounter





Motion of ice particles around the comet



PASADENA, Calif. -- The EPOXI mission's recent encounter with comet Hartley 2 provided the first images clear enough for scientists to link jets of dust and gas with specific surface features. NASA and other scientists have begun to analyze the images.

The EPOXI mission spacecraft revealed a cometary snow storm created by carbon dioxide jets spewing out tons of golf-ball to basketball-sized fluffy ice particles from the peanut-shaped comet's rocky ends. At the same time, a different process was causing water vapor to escape from the comet's smooth mid-section. This information sheds new light on the nature of comets and even planets.

Scientists compared the new data to data from a comet the spacecraft previously visited that was somewhat different from Hartley 2. In 2005, the spacecraft successfully released an impactor into the path of comet Tempel 1, while observing it during a flyby.

"This is the first time we've ever seen individual chunks of ice in the cloud around a comet or jets definitively powered by carbon dioxide gas," said Michael A'Hearn, principal investigator for the spacecraft at the University of Maryland. "We looked for, but didn't see, such ice particles around comet Tempel 1."

The new findings show Hartley 2 acts differently than Tempel 1 or the three other comets with nuclei imaged by spacecraft. Carbon dioxide appears to be a key to understanding Hartley 2 and explains why the smooth and rough areas scientists saw respond differently to solar heating, and have different mechanisms by which water escapes from the comet's interior.

"When we first saw all the specks surrounding the nucleus, our mouths dropped," said Pete Schultz, EPOXI mission co-investigator at Brown University. "Stereo images reveal there are snowballs in front and behind the nucleus, making it look like a scene in one of those crystal snow globes."

Data show the smooth area of comet Hartley 2 looks and behaves like most of the surface of comet Tempel 1, with water evaporating below the surface and percolating out through the dust. However, the rough areas of Hartley 2, with carbon dioxide jets spraying out ice particles, are very different.

"The carbon dioxide jets blast out water ice from specific locations in the rough areas resulting in a cloud of ice and snow," said Jessica Sunshine, EPOXI deputy principal investigator at the University of Maryland. "Underneath the smooth middle area, water ice turns into water vapor that flows through the porous material, with the result that close to the comet in this area we see a lot of water vapor."

Engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have been looking for signs ice particles peppered the spacecraft. So far they found nine times when particles, estimated to weigh slightly less than the mass of a snowflake, might have hit the spacecraft but did not damage it.

"The EPOXI mission spacecraft sailed through Hartley 2's ice flurries in fine working order and continues to take images as planned of this amazing comet," said Tim Larson, EPOXI project manager at JPL.

Scientists will need more detailed analysis to determine how long this snow storm has been active, and whether the differences in activity between the middle and ends of the comet are the result of how it formed some 4.5 billion years ago or are because of more recent evolutionary effects

Cassini Sees Saturn on a Cosmic Dimmer Switch




Like a cosmic lightbulb on a dimmer switch, Saturn emitted gradually less energy each year from 2005 to 2009, according to observations by NASA's Cassini spacecraft. But unlike an ordinary bulb, Saturn's southern hemisphere consistently emitted more energy than its northern one. On top of that, energy levels changed with the seasons and differed from the last time a spacecraft visited Saturn in the early 1980s. These never-before-seen trends came from a detailed analysis of long-term data from the composite infrared spectrometer (CIRS), an instrument built by NASA's Goddard Space Flight Center in Greenbelt, Md., as well as a comparison with earlier data from NASA's Voyager spacecraft. When combined with information about the energy coming to Saturn from the sun, the results could help scientists understand the nature of Saturn's internal heat source.

"The fact that Saturn actually emits more than twice the energy it absorbs from the sun has been a puzzle for many decades now," said Kevin Baines, a Cassini team scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and a co-author on a new paper about Saturn's energy output. "What generates that extra energy? This paper represents the first step in that analysis."

The research, reported this week in the Journal of Geophysical Research-Planets, was led by Liming Li of Cornell University in Ithaca, N.Y. (now at the University of Houston).

"The Cassini CIRS data are very valuable because they give us a nearly complete picture of Saturn," Li said. "This is the only single data set that provides so much information about this planet, and it's the first time that anybody has been able to study the power emitted by one of the giant planets in such detail."

The planets in our solar system lose energy in the form of heat radiation in wavelengths that are invisible to the human eye. The CIRS instrument picks up wavelengths in the thermal infrared region, far enough beyond red light where the wavelengths correspond to heat emission.

"In planetary science, we tend to think of planets as losing power evenly in all directions and at a steady rate," Li said. "Now we know Saturn is not doing that." (Power is the amount of energy emitted per unit of time.)

Instead, Saturn's flow of outgoing energy was lopsided, with its southern hemisphere giving off about one-sixth more energy than the northern one, Li explains. This effect matched Saturn's seasons: during those five Earth-years, it was summer in the southern hemisphere and winter in the northern one. (A season on Saturn lasts about seven Earth-years.) Like Earth, Saturn has these seasons because the planet is tilted on its axis, so one hemisphere receives more energy from the sun and experiences summer, while the other receives less energy and is shrouded in winter. Saturn's equinox, when the sun was directly over the equator, occurred in August 2009.

In the study, Saturn's seasons looked Earth-like in another way: in each hemisphere, its effective temperature, which characterizes its thermal emission to space, started to warm up or cool down as a change of season approached. The effective temperature provides a simple way to track the response of Saturn's atmosphere to the seasonal changes, which is complicated because Saturn's weather is variable and the atmosphere tends to retain heat. Cassini's observations revealed that the effective temperature in the northern hemisphere gradually dropped from 2005 to 2008 and started to warm up again by 2009. In the southern hemisphere, the effective temperature cooled from 2005 to 2009.

The emitted energy for each hemisphere rose and fell along with the effective temperature. Even so, during this five-year period, the planet as a whole seemed to be slowly cooling down and emitting less energy.

To find out if similar changes were happening one Saturn-year ago, the researchers looked at data collected by the Voyager spacecraft in 1980 and 1981 and did not see the imbalance between the southern and northern hemispheres. Instead, the two regions were much more consistent with each other.

Why wouldn't Voyager have seen the same summer-versus-winter difference between the two hemispheres? One explanation is that cloud patterns at depth could have fluctuated, blocking and scattering infrared light differently.

"It's reasonable to think that the changes in Saturn's emitted power are related to cloud cover," says Amy Simon-Miller, who heads the Planetary Systems Laboratory at Goddard and is a co-author on the paper. "As the amount of cloud cover changes, the amount of radiation escaping into space also changes. This might vary during a single season and from one Saturn-year to another. But to fully understand what is happening on Saturn, we will need the other half of the picture: the amount of power being absorbed by the planet."

Scientists will be doing that as a next step by comparing the instrument's findings to data obtained by Cassini's imaging cameras and infrared mapping spectrometer instrument. The spectrometer, in particular, measures the amount of sunlight reflected by Saturn. Because scientists know the total amount of solar energy delivered to Saturn, they can derive the amount of sunlight absorbed by the planet and discern how much heat the planet itself is emitting. These calculations help scientists tackle what the actual source of that warming might be and whether it changes.

Better understanding Saturn's internal heat flow "will significantly deepen our understanding of the weather, internal structure and evolution of Saturn and the other giant planets," Li said


NASA's Wide-field Infrared Survey Explorer, or WISE, has eyed its first cool brown dwarf: a tiny, ultra-cold star floating all alone in space.

WISE is scanning the whole sky in infrared light, picking up the glow of not just brown dwarfs but also asteroids, stars and galaxies. It has sent millions of images down to Earth, in which infrared light of different wavelengths is color-coded in the images.

"The brown dwarfs jump out at you like big, fat, green emeralds," said Amy Mainzer, the deputy project scientist of WISE at NASA's Jet Propulsion Laboratory in Pasadena, Calif. Mainzer, who makes jewelry in her spare time, explained that the brown dwarfs appear like green gems in WISE images because the methane in their atmospheres absorbs the infrared light that has been coded blue, and because they are too faint to give off the infrared light that is color-coded red. The only color left is green.

Like Jupiter, brown dwarfs are made up of gas -- a lot of it in the form of methane, hydrogen sulfide, and ammonia. These gases would be deadly to humans at the concentrations found around brown dwarfs. And they wouldn't exactly smell pretty.

"If you could bottle up a gallon of this object's atmosphere and bring it back to Earth, smelling it wouldn't kill you, but it would stink pretty badly -- like rotten eggs with a hint of ammonia," said Mainzer.

Mainzer and other members of the WISE team are already accumulating a quarry of brown dwarf candidates similar to this one. Brown dwarfs have masses somewhere between those of a star and a planet. They start out like stars as collapsing balls of gas, but they lack the mass to fuse atoms together at their core and shine with starlight. As time goes on, these lightweights cool off, until they can only be seen in infrared light. There could be many such objects lurking in the neighborhood of our sun, but astronomers know of only a handful so far. WISE is expected to find hundreds, including the coolest and closest of all.

To scientists, brown dwarfs represent the perfect laboratories for studying planet-like atmospheres.

"They're a great test of our understanding of atmospheric physics of planets, since they don't have solid surfaces, and there's no big, bright sun to get in the way," said co-author Michael Cushing, a postdoctoral fellow at JPL.

WISE's new brown dwarf is named WISEPC J045853.90+643451.9 for its location in the sky. It is estimated to be 18 to 30 light-years away and is one of the coolest brown dwarfs known, with a temperature of about 600 Kelvin, or 620 degrees Fahrenheit. That's downright chilly as far as stars go. The fact that this brown dwarf jumped out of the data so easily and so quickly -- it was spotted 57 days into the survey mission -- indicates that WISE will discover many, many more. The discovery was confirmed by follow-up observations at the University of Virginia's Fan Mountain telescope, the Large Binocular Telescope in southeastern Arizona, and NASA's Infrared Telescope Facility on Mauna Kea, Hawaii. The results are in press at the Astrophysical Journal

NASA EPOXI Flyby Reveals New Insights Into Comet Features





PASADENA, Calif. - NASA's EPOXI mission spacecraft successfully flew past comet Hartley 2 at 7 a.m. PDT (10 a.m. EDT) Thursday, Nov. 4. Scientists say initial images from the flyby provide new information about the comet's volume and material spewing from its surface.

"Early observations of the comet show that, for the first time, we may be able to connect activity to individual features on the nucleus," said EPOXI Principal Investigator Michael A'Hearn of the University of Maryland, College Park. "We certainly have our hands full. The images are full of great cometary data, and that's what we hoped for."

EPOXI is an extended mission that uses the already in-flight Deep Impact spacecraft. Its encounter phase with Hartley 2 began at 1 p.m. PDT (4 p.m. EDT) on Nov. 3, when the spacecraft began to point its two imagers at the comet's nucleus. Imaging of the nucleus began one hour later.

"The spacecraft has provided the most extensive observations of a comet in history," said Ed Weiler, associate administrator for NASA's Science Mission Directorate at the agency's headquarters in Washington. "Scientists and engineers have successfully squeezed world-class science from a re-purposed spacecraft at a fraction of the cost to taxpayers of a new science project."

Images from the EPOXI mission reveal comet Hartley 2 to have 100 times less volume than comet Tempel 1, the first target of Deep Impact. More revelations about Hartley 2 are expected as analysis continues.

Initial estimates indicate the spacecraft was about 700 kilometers (435 miles) from the comet at the closest-approach point. That's almost the exact distance that was calculated by engineers in advance of the flyby.

"It is a testament to our team's skill that we nailed the flyby distance to a comet that likes to move around the sky so much," said Tim Larson, EPOXI project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "While it's great to see the images coming down, there is still work to be done. We have another three weeks of imaging during our outbound journey."

The name EPOXI is a combination of the names for the two extended mission components: the Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft has retained the name "Deep Impact." In 2005, Deep Impact successfully released an impactor into the path of comet Tempel 1

NASA Mission Successfully Flies by Comet Hartley 2










PASADENA, CALIF. - NASA's EPOXI mission successfully flew by comet Hartley 2 at about 7 a.m. PDT (10 a.m. EDT) today, and the spacecraft has begun returning images. Hartley 2 is the fifth comet nucleus visited by a spacecraft.

Scientists and mission controllers are currently viewing never-before-seen images of Hartley 2 appearing on their computer terminal screens.

"The mission team and scientists have worked hard for this day," said Tim Larson, EPOXI project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It's good to see Hartley 2 up close."

Mission navigators are working to determine the spacecraft's closest approach distance. Preliminary estimates place the spacecraft close to the planned-for 700 kilometers (435 miles). Eight minutes after closest approach, at 6:59:47 a.m. PDT ( 9:59:47 a.m. EDT), the spacecraft's high-gain antenna was pointed at Earth and began downlinking vital spacecraft health and other engineering data stored aboard the spacecraft's onboard computer during the encounter. About 20 minutes later, the first images of the encounter made the 37-million-kilometer (23-million-mile) trip from the spacecraft to NASA's Deep Space Network antennas in Goldstone, Calif., appearing moments later on the mission's computer screens.

"We are all holding our breath to see what discoveries await us in the observations near closest approach," said EPOXI principal investigator Michael A'Hearn of the University of Maryland, College Park.

A post-encounter news conference will be held at 1 p.m. PDT (4 p.m. EDT) in the von Karman auditorium at JPL. It will be carried live on NASA TV. Downlink and schedule information is online at http://www.nasa.gov/ntv . The event will also be carried live on http://www.ustream.tv/nasajpl2 .

EPOXI is an extended mission that utilizes the already "in-flight" Deep Impact spacecraft to explore distinct celestial targets of opportunity. The name EPOXI itself is a combination of the names for the two extended mission components: the extrasolar planet observations, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft has retained the name "Deep Impact."tp://www.jpl.nasa.gov/images/epoxi/20101104/epoxi-5-slide.jpg

Cassini Sees Saturn Rings Oscillate Like Mini-Galaxy



Scientists believe they finally understand why one of the most dynamic regions in Saturn's rings has such an irregular and varying shape, thanks to images captured by NASA's Cassini spacecraft. And the answer, published online today in the Astronomical Journal, is this: The rings are behaving like a miniature version of our own Milky Way galaxy.

This new insight, garnered from images of Saturn's most massive ring, the B ring, may answer another long-standing question: What causes the bewildering variety of structures seen throughout the very densest regions of Saturn's rings?

Another finding from new images of the B ring's outer edge was the presence of at least two perturbed regions, including a long arc of narrow, shadow-casting peaks as high as 3.5 kilometers (2 miles) above the ring plane. The areas are likely populated with small moons that might have migrated across the outer part of the B ring in the past and got trapped in a zone affected by the moon Mimas' gravity. This process is commonly believed to have configured the present-day solar system.

"We have found what we hoped we'd find when we set out on this journey with Cassini nearly 13 years ago: visibility into the mechanisms that have sculpted not only Saturn's rings, but celestial disks of a far grander scale, from solar systems, like our own, all the way to the giant spiral galaxies," said Carolyn Porco, co-author on the new paper and Cassini imaging team lead, based at the Space Science Institute, Boulder, Colo.

New images and movies of the outer B ring edge can be found at http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov and http://ciclops.org .

Since NASA's Voyager spacecraft flew by Saturn in 1980 and 1981, scientists have known that the outer edge of the planet's B ring was shaped like a rotating, flattened football by the gravitational perturbations of Mimas. But it was clear, even in Voyager's findings, that the outer B ring's behavior was far more complex than anything Mimas alone might do.

Now, analysis of thousands of Cassini images of the B ring taken over a four-year period has revealed the source of most of the complexity: at least three additional, independently rotating wave patterns, or oscillations, that distort the B ring's edge. These oscillations, with one, two or three lobes, are not created by any moons. They have instead spontaneously arisen, in part because the ring is dense enough, and the B ring edge is sharp enough, for waves to grow on their own and then reflect at the edge.

"These oscillations exist for the same reason that guitar strings have natural modes of oscillation, which can be excited when plucked or otherwise disturbed," said Joseph Spitale, lead author on today's article and an imaging team associate at the Space Science Institute. "The ring, too, has its own natural oscillation frequencies, and that's what we're observing."

Astronomers believe such "self-excited" oscillations exist in other disk systems, like spiral disk galaxies and proto-planetary disks found around nearby stars, but they have not been able to directly confirm their existence. The new observations confirm the first large-scale wave oscillations of this type in a broad disk of material anywhere in nature.

Self-excited waves on small, 100-meter (300-foot) scales have been previously observed by Cassini instruments in a few dense ring regions and have been attributed to a process called "viscous overstability." In that process, the ring particles' small, random motions feed energy into a wave and cause it to grow. The new results confirm a Voyager-era predication that this same process can explain all the puzzling chaotic waveforms found in Saturn's densest rings, from tens of meters up to hundreds of kilometers wide.

"Normally viscosity, or resistance to flow, damps waves -- the way sound waves traveling through the air would die out," said Peter Goldreich, a planetary ring theorist at the California Institute of Technology in Pasadena. "But the new findings show that, in the densest parts of Saturn's rings, viscosity actually amplifies waves, explaining mysterious grooves first seen in images taken by the Voyager spacecraft."

The two perturbed B ring regions found orbiting within Mimas' zone of influence stretch along arcs up to 20,000 kilometers (12,000 miles) long. The longest one was first seen last year when the sun's low angle on the ring plane betrayed the existence of a series of tall structures through their long, spiky shadows. The small moons disturbing the material are probably hundreds of meters to possibly a kilometer or more in size.

Silica on a Mars Volcano Tells of Wet and Cozy Past



PASADENA, Calif. -- Light-colored mounds of a mineral deposited on a volcanic cone more than three billion years ago may preserve evidence of one of the most recent habitable microenvironments on Mars.

Observations by NASA's Mars Reconnaissance Orbiter enabled researchers to identify the mineral as hydrated silica and to see its volcanic context. The mounds' composition and their location on the flanks of a volcanic cone provide the best evidence yet found on Mars for an intact deposit from a hydrothermal environment -- a steam fumarole, or hot spring. Such environments may have provided habitats for some of Earth's earliest life forms.

"The heat and water required to create this deposit probably made this a habitable zone," said J.R. Skok of Brown University, Providence, R.I., lead author of a paper about these findings published online today by Nature Geoscience. "If life did exist there, this would be a promising type of deposit to entomb evidence of it -- a microbial mortuary."

No studies have yet determined whether Mars has ever supported life. The new results add to accumulating evidence that, at some times and in some places, Mars has had favorable environments for microbial life. This specific place would have been habitable when most of Mars was already dry and cold. Concentrations of hydrated silica have been identified on Mars previously, including a nearly pure patch found by NASA's Mars Exploration Rover Spirit in 2007. However, none of those earlier findings were in such an intact setting as this one, and the setting adds evidence about the origin.

Skok said, "You have spectacular context for this deposit. It's right on the flank of a volcano. The setting remains essentially the same as it was when the silica was deposited."

The small cone rises about 100 meters (100 yards) from the floor of a shallow bowl named Nili Patera. The patera, which is the floor of a volcanic caldera, spans about 50 kilometers (30 miles) in the Syrtis Major volcanic region of equatorial Mars. Before the cone formed, free-flowing lava blanketed nearby plains. The collapse of an underground magma chamber from which lava had emanated created the bowl. Subsequent lava flows, still with a runny texture, coated the floor of Nili Patera. The cone grew from even later flows, apparently after evolution of the underground magma had thickened its texture so that the erupted lava would mound up.

"We can read a series of chapters in this history book and know that the cone grew from the last gasp of a giant volcanic system," said John Mustard, Skok's thesis advisor at Brown and a co-author of the paper. "The cooling and solidification of most of the magma concentrated its silica and water content."

Observations by cameras on the Mars Reconnaissance Orbiter revealed patches of bright deposits near the summit of the cone, fanning down its flank, and on flatter ground in the vicinity. The Brown researchers partnered with Scott Murchie of Johns Hopkins University Applied Physics Laboratory, Laurel, Md., to analyze the bright exposures with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the orbiter.

Silica can be dissolved, transported and concentrated by hot water or steam. Hydrated silica identified by the spectrometer in uphill locations -- confirmed by stereo imaging -- indicates that hot springs or fumaroles fed by underground heating created these deposits. Silica deposits around hydrothermal vents in Iceland are among the best parallels on Earth.

Murchie said, "The habitable zone would have been within and alongside the conduits carrying the heated water." The volcanic activity that built the cone in Nili Patera appears to have happened more recently than the 3.7-billion-year or greater age of Mars' potentially habitable early wet environments recorded in clay minerals identified from orbit.

Study Links Fresh Mars Gullies to Carbon Dioxide


PASADENA, Calif. -- A growing bounty of images from NASA's Mars Reconnaissance Orbiter reveals that the timing of new activity in one type of the enigmatic gullies on Mars implicates carbon-dioxide frost, rather than water, as the agent causing fresh flows of sand.

Researchers have tracked changes in gullies on faces of sand dunes in seven locations on southern Mars. The periods when changes occurred, as determined by comparisons of before-and-after images, overlapped in all cases with the known winter build-up of carbon-dioxide frost on the dunes. Before-and-after pairs that covered periods only in spring, summer and autumn showed no new activity in those seasons.

"Gullies that look like this on Earth are caused by flowing water, but Mars is a different planet with its own mysteries," said Serina Diniega, lead author of a report on these findings in the November issue of the journal Geology. She analyzed these gullies while a graduate student at the University of Arizona, Tucson, and recently joined NASA's Jet Propulsion Laboratory, Pasadena. "The timing we see points to carbon dioxide, and if the mechanism is linked to carbon-dioxide frost at these dune gullies, the same could be true for other gullies on Mars."

Scientists have suggested various explanations for modern gullies on Mars since fresh-looking gullies were discovered in images from NASA's Mars Global Surveyor in 2000. Some of the proposed mechanisms involve water, some carbon dioxide, and some neither.

Some fresh gullies are on sand dunes, commonly starting at a crest. Others are on rockier slopes, such as the inner walls of craters, sometimes starting partway down the slope.

Diniega and co-authors at the University of Arizona and Johns Hopkins University Applied Physics Laboratory, Laurel, Md., focused their study on dune gullies that are shaped like rockier slope gullies, with an alcove at the top, a channel or multiple channels in the middle, and an apron at the bottom. The 18 dune gullies in which the researchers observed new activity range in size from about 50 meters or yards long to more than 3 kilometers (2 miles) long.

"The alcove is a cutout at the top," Diniega said. "Material being removed from there ends up in a fan-shaped apron below."

Because new flows in these gullies apparently occur in winter, rather than at a time when any frozen water might be most likely to melt, the new report calls for studies of how carbon dioxide, rather than water, could be involved in the flows. Some carbon dioxide from the Martian atmosphere freezes on the ground during winter and sublimates back to gaseous form as spring approaches. The dunes studied are poleward of 40 degrees south latitude.

"One possibility is that a pile of carbon-dioxide frost accumulating on a dune gets thick enough to avalanche down and drag other material with it," Diniega said. Other suggested mechanisms are that gas from sublimating frost could lubricate a flow of dry sand or erupt in puffs energetic enough to trigger slides.

At an increasing number of sites, before-and-after images have documented changes in Martian gullies. The new report uses images from the Mars Orbiter Camera on Mars Global Surveyor, which operated from 1997 to 2006, and from the High Resolution Science Imaging Experiment (HiRISE) camera and Context Camera on Mars Reconnaissance Orbiter, which has been examining Mars since 2006.

"The Mars Reconnaissance Orbiter is enabling valuable studies of seasonal changes in surface features on Mars," said Sue Smrekar of NASA's Jet Propulsion Laboratory, Pasadena, Calif., deputy project scientist for this orbiter. "One key to doing that has been the capability to point from side to side, so that priority targets can be checked more frequently than just when the spacecraft flies directly overhead. Another is the lengthening span of years covered by first Mars Global Surveyor and now this mission."

NASA Survey Suggests Earth-Sized Planets are Common



PASADENA, Calif. -- Nearly one in four stars similar to the sun may host planets as small as Earth, according to a new study funded by NASA and the University of California.

The study is the most extensive and sensitive planetary census of its kind. Astronomers used the W.M. Keck Observatory in Hawaii for five years to search 166 sun-like stars near our solar system for planets of various sizes, ranging from three to 1,000 times the mass of Earth. All of the planets in the study orbit close to their stars. The results show more small planets than large ones, indicating small planets are more prevalent in our Milky Way galaxy.

"We studied planets of many masses -- like counting boulders, rocks and pebbles in a canyon -- and found more rocks than boulders, and more pebbles than rocks. Our ground-based technology can't see the grains of sand, the Earth-size planets, but we can estimate their numbers," said Andrew Howard of the University of California, Berkeley, lead author of the new study. "Earth-size planets in our galaxy are like grains of sand sprinkled on a beach -- they are everywhere."

The study appears in the Oct. 29 issue of the journal Science.

The research provides a tantalizing clue that potentially habitable planets could also be common. These hypothesized Earth-size worlds would orbit farther away from their stars, where conditions could be favorable for life. NASA's Kepler spacecraft is also surveying sun-like stars for planets and is expected to find the first true Earth-like planets in the next few years.

Howard and his planet-hunting team, which includes principal investigator Geoff Marcy, also of the University of California, Berkeley, looked for planets within 80-light-years of Earth, using the radial velocity, or "wobble," technique.

They measured the numbers of planets falling into five groups, ranging from 1,000 times the mass of Earth, or about three times the mass of Jupiter, down to three times the mass of Earth. The search was confined to planets orbiting close to their stars -- within 0.25 astronomical units, or a quarter of the distance between our sun and Earth.

A distinct trend jumped out of the data: smaller planets outnumber larger ones. Only 1.6 percent of stars were found to host giant planets orbiting close in. That includes the three highest-mass planet groups in the study, or planets comparable to Saturn and Jupiter. About 6.5 percent of stars were found to have intermediate-mass planets, with 10 to 30 times the mass of Earth -- planets the size of Neptune and Uranus. And 11.8 percent had the so-called "super-Earths," weighing in at only three to 10 times the mass of Earth.

"During planet formation, small bodies similar to asteroids and comets stick together, eventually growing to Earth-size and beyond. Not all of the planets grow large enough to become giant planets like Saturn and Jupiter," Howard said. "It's natural for lots of these building blocks, the small planets, to be left over in this process."

The astronomers extrapolated from these survey data to estimate that 23 percent of sun-like stars in our galaxy host even smaller planets, the Earth-sized ones, orbiting in the hot zone close to a star. "This is the statistical fruit of years of planet-hunting work," said Marcy. "The data tell us that our galaxy, with its roughly 200 billion stars, has at least 46 billion Earth-size planets, and that's not counting Earth-size planets that orbit farther away from their stars in the habitable zone."

The findings challenge a key prediction of some theories of planet formation. Models predict a planet "desert" in the hot-zone region close to stars, or a drop in the numbers of planets with masses less than 30 times that of Earth. This desert was thought to arise because most planets form in the cool, outer region of solar systems, and only the giant planets were thought to migrate in significant numbers into the hot inner region. The new study finds a surplus of close-in, small planets where theories had predicted a scarcity.

"We are at the cusp of understanding the frequency of Earth-sized planets among planetary systems in the solar neighborhood," said Mario R. Perez, Keck program scientist at NASA Headquarters in Washington. "This work is part of a key NASA science program and will stimulate new theories to explain the significance and impact of these findings."

NASA Trapped Mars Rover Finds Evidence of Subsurface Water

PASADENA, Calif. -- The ground where NASA's Mars Exploration Rover Spirit became stuck last year holds evidence that water, perhaps as snow melt, trickled into the subsurface fairly recently and on a continuing basis.

Stratified soil layers with different compositions close to the surface led the rover science team to propose that thin films of water may have entered the ground from frost or snow. The seepage could have happened during cyclical climate changes in periods when Mars tilted farther on its axis. The water may have moved down into the sand, carrying soluble minerals deeper than less soluble ones. Spin-axis tilt varies over timescales of hundreds of thousands of years.

The relatively insoluble minerals near the surface include what is thought to be hematite, silica and gypsum. Ferric sulfates, which are more soluble, appear to have been dissolved and carried down by water. None of these minerals are exposed at the surface, which is covered by wind-blown sand and dust.

"The lack of exposures at the surface indicates the preferential dissolution of ferric sulfates must be a relatively recent and ongoing process since wind has been systematically stripping soil and altering landscapes in the region Spirit has been examining," said Ray Arvidson of Washington University in St. Louis, deputy principal investigator for the twin rovers Spirit and Opportunity.

Analysis of these findings appears in a report in the Journal of Geophysical Research published by Arvidson and 36 co-authors about Spirit's operations from late 2007 until just before the rover stopped communicating in March.

The twin Mars rovers finished their three-month prime missions in April 2004, then kept exploring in bonus missions. One of Spirit's six wheels quit working in 2006.

In April 2009, Spirit's left wheels broke through a crust at a site called "Troy" and churned into soft sand. A second wheel stopped working seven months later. Spirit could not obtain a position slanting its solar panels toward the sun for the winter, as it had for previous winters. Engineers anticipated it would enter a low-power, silent hibernation mode, and the rover stopped communicating March 22. Spring begins next month at Spirit's site, and NASA is using the Deep Space Network and the Mars Odyssey orbiter to listen if the rover reawakens.

Researchers took advantage of Spirit's months at Troy last year to examine in great detail soil layers the wheels had exposed, and also neighboring surfaces. Spirit made 13 inches of progress in its last 10 backward drives before energy levels fell too low for further driving in February. Those drives exposed a new area of soil for possible examination if Spirit does awaken and its robotic arm is still usable.

"With insufficient solar energy during the winter, Spirit goes into a deep-sleep hibernation mode where all rover systems are turned off, including the radio and survival heaters," said John Callas, project manager for Spirit and Opportunity at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "All available solar array energy goes into charging the batteries and keeping the mission clock running."

The rover is expected to have experienced temperatures colder than it has ever before, and it may not survive. If Spirit does get back to work, the top priority is a multi-month study that can be done without driving the rover. The study would measure the rotation of Mars through the Doppler signature of the stationary rover's radio signal with enough precision to gain new information about the planet's core. The rover Opportunity has been making steady progress toward a large crater, Endeavour, which is now approximately 8 kilometers (5 miles) away.

Spirit, Opportunity, and other NASA Mars missions have found evidence of wet Martian environments billions of years ago that were possibly favorable for life. The Phoenix Mars Lander in 2008 and observations by orbiters since 2002 have identified buried layers of water ice at high and middle latitudes and frozen water in polar ice caps. These newest Spirit findings contribute to an accumulating set of clues that Mars may still have small amounts of liquid water at some periods during ongoing climate cycles

Large Carbon Structures (Buckyballs) Thrive

PASADENA, Calif. -- Astronomers have discovered bucket loads of buckyballs in space. They used NASA's Spitzer Space Telescope to find the little carbon spheres throughout our Milky Way galaxy -- in the space between stars and around three dying stars. What's more, Spitzer detected buckyballs around a fourth dying star in a nearby galaxy in staggering quantities -- the equivalent in mass to about 15 of our moons.

Buckyballs, also known as fullerenes, are soccer-ball-shaped molecules consisting of 60 linked carbon atoms. They are named for their resemblance to the architect Buckminster Fuller's geodesic domes, an example of which is found at the entrance to Disney's Epcot theme park in Orlando, Fla. The miniature spheres were first discovered in a lab on Earth 25 years ago, but it wasn't until this past July that Spitzer was able to provide the first confirmed proof of their existence in space. At that time, scientists weren't sure if they had been lucky to find a rare supply, or if perhaps the cosmic balls were all around.

"It turns out that buckyballs are much more common and abundant in the universe than initially thought," said astronomer Letizia Stanghellini of the National Optical Astronomy Observatory in Tucson, Ariz. "Spitzer had recently found them in one specific location, but now we see them in other environments. This has implications for the chemistry of life. It's possible that buckyballs from outer space provided seeds for life on Earth."

Stanghellini is co-author of a new study appearing online Oct. 28 in the Astrophysical Journal Letters. Anibal García-Hernández of the Instituto de Astrofísica de Canarias, Spain, is the lead author of the paper. Another Spitzer study about the discovery of buckyballs in space was also recently published in the Astrophysical Journal Letters. It was led by Kris Sellgren of Ohio State University, Columbus.

The García-Hernández team found the buckyballs around three dying sun-like stars, called planetary nebulae, in our own Milky Way galaxy. These cloudy objects, made up of material shed from the dying stars, are similar to the one where Spitzer found the first evidence for their existence.

The new research shows that all the planetary nebulae in which buckyballs have been detected are rich in hydrogen. This goes against what researchers thought for decades -- they had assumed that, as is the case with making buckyballs in the lab, hydrogen could not be present. The hydrogen, they theorized, would contaminate the carbon, causing it to form chains and other structures rather than the spheres, which contain no hydrogen at all. "We now know that fullerenes and hydrogen coexist in planetary nebulae, which is really important for telling us how they form in space," said García-Hernández.

García-Hernández and his colleagues also located buckyballs in a planetary nebula within a nearby galaxy called the Small Magellanic Cloud. This was particularly exciting to the researchers, because, in contrast to the planetary nebulae in the Milky Way, the distance to this galaxy is known. Knowing the distance to the source of the buckyballs meant that the astronomers could calculate their quantity -- twenty percent of Earth's mass, or the mass of 15 of our moons.

The other new study, from Sellgren and her team, demonstrates that buckyballs are also present in the space between stars, but not too far away from young solar systems. The cosmic balls may have been formed in a planetary nebula, or perhaps between stars. A feature story about this research is online at http://www.spitzer.caltech.edu/news/1212-feature10-18 .

"It’s exciting to find buckyballs in between stars that are still forming their solar systems, just a comet’s throw away," Sellgren said. "This could be the link between fullerenes in space and fullerenes in meteorites."

The implications are far-reaching. Scientists have speculated in the past that buckyballs, which can act like cages for other molecules and atoms, might have carried substances to Earth that kick-started life. Evidence for this theory comes from the fact that buckyballs have been found in meteorites carrying extraterrestial gases.

"Buckyballs are sort of like diamonds with holes in the middle," said Stanghellini. "They are incredibly stable molecules that are hard to destroy, and they could carry other interesting molecules inside them. We hope to learn more about the important role they likely play in the death and birth of stars and planets, and maybe even life itself."

The little carbon balls are important in technology research too. They have potential applications in superconducting materials, optical devices, medicines, water purification, armor and more

Friday 22 October 2010

13 Billion Year Old Galaxy, Imaged by Hubble (.....imaged for over 48 hours!!)


A tiny faint dot in a Hubble picture has been confirmed as the most distant galaxy ever detected in the Universe.
This collection of stars is so far away its light has taken more than 13 billion years to arrive at Earth.
Astronomers used the Very Large Telescope in Chile to follow up the Hubble observation and make the necessary detailed measurements.
They tell the journal Nature that we are seeing the galaxy as it was just 600 million years after the Big Bang.
"If you look at the object in the Hubble image, it really isn't much," said Dr Matt Lehnert of the Observatoire de Paris, France, and lead author on the Nature paper.
"We really don't know much about it, but it looks like it is quite small - much, much smaller than our own Milky Way Galaxy. It's probably got only a tenth to a hundredth of the stars in the Milky Way. And that's part of the difficulty in observing it - if it's not big, it's not bright," he told BBC News.
Scientists are very keen to probe these great distances because they will learn how the early Universe evolved, and that will help them explain why the cosmos looks the way it does now.
In particular, they want to see more evidence for the very first populations of stars. These hot, blue giants would have grown out of the cold neutral gas that pervaded the young cosmos.
The Wide Field Camera 3 was fitted to Hubble during its last servicing mission
These behemoths would have burnt brilliant but brief lives, producing the very first heavy elements.
They would also have "fried" the neutral gas around them - ripping electrons off atoms - to produce the diffuse intergalactic plasma we still detect between nearby stars today.
So, apart from its status as a record-breaker, the newly discovered Hubble galaxy, classified as UDFy-38135539, is of keen interest because it is embedded directly in this time period - the "epoch of re-ionisation", as astronomers call it.
The galaxy was one of several interesting candidates identified in the Hubble Ultra Deep Field (UDF) image of the Fornax Constellation acquired with the telescope's new Wide Field Camera 3 last year.
As a source of light, it barely registers on the Hubble picture which was made from an exposure lasting 48 hours.
The four 8.2m telescopes of the VLT. Yepun is the far-right unit. Sinfoni is circled at its base in the inset
Astronomers knew from the UDF data that the galaxy must be very far away, but it took some exquisite measurements using the Yepun Very Large Telescope unit on Mount Paranal in the Atacama Desert to determine the precise distance.
This was done using the Sinfoni instrument attached to Yepun. The spectrograph was able to pick apart the weak infrared light and establish the degree to which it had been stretched on its long journey through space and time by the expansion of the Universe.
Using this measure, known as redshift, the astronomers could confirm that UDFy-38135539 was more than 13 billion light-years distant (a redshift of 8.55).
Dr Andy Bunker from Oxford University, UK, worked with one of the Hubble teams that first spotted the galaxy. He said Lehnert and colleagues had made a compelling case for the object's great distance.
"These things are incredibly faint and far away," he commented. "You're talking about an emission line that's a small fraction of the brightness of the night sky and you have to be very careful in your measurement; but this group is careful. The result looks convincing," he said.
It required the exquisite capabilities of the Sinfoni instrument to confirm the galaxy's great distance
A redshift of 8.55 puts the galaxy firmly within the epoch of re-ionisation.
At this early time, theory indicates, the Universe would not have been fully transparent. Much of it would have been filled with a hydrogen "fog" that absorbed the fierce ultraviolet light coming off the young galaxies.
Only as these galaxies ionised this neutral gas filling the space between them did their light sweep out across the cosmos.
One of the more puzzling aspects of the discovery is that the glow from UDFy-38135539 would not have been strong enough on its own to burrow a path through the opaque hydrogen fog.
This means there must be fainter, less massive galaxies - unseen in the Hubble UDF - helping to clear out the neighbourhood.
Professor Malcolm Bremer of Bristol University, UK, is a co-author on the Nature paper. He explained the importance of these distant objects to astronomy:
"They're beautiful probes of our understanding of galaxy formation because we're seeing them at their earliest stages and therefore, hopefully, at their simplest," he said.
"If we want to believe we understand galaxy formation and evolution, then we would want to be able to say that the observed properties in these early galaxies are what we've been predicting. We want to see the start of the process," he told BBC News.
These observations on both Hubble and the VLT push current technology to the limit.
Astronomers have other candidates of similar distance in the UDF they hope to confirm soon. However, the real breakthrough in observing the epoch of re-ionisation is probably going to have to wait until more powerful telescopes and techniques are established.
This next-generation astronomy will include Hubble's successor (the James Webb Space Telescope) and the Extremely Large Telescope (ELT) to be built near the VLT in Chile.
The ELT will catch the faintest starlight with a mirror some 42m across. That is five times the diameter of Yepun's primary mirror

Wednesday 20 October 2010

Spitzer Finds Warm Spot on an Exoplanet

PASADENA, Calif. -- Observations from NASA's Spitzer Space Telescope reveal a distant planet with a warm spot in the wrong place.

The gas-giant planet, named upsilon Andromedae b, orbits tightly around its star, with one face perpetually boiling under the star's heat. It belongs to a class of planets termed hot Jupiters, so called for their scorching temperatures and large, gaseous constitutions.

One might think the hottest part of these planets would be directly under the sun-facing side, but previous observations have shown that their hot spots may be shifted slightly away from this point. Astronomers thought that fierce winds might be pushing hot, gaseous material around.

But the new finding may throw this theory into question. Using Spitzer, an infrared observatory, astronomers found that upsilon Andromedae b's hot spot is offset by a whopping 80 degrees. Basically, the hot spot is over to the side of the planet instead of directly under the glare of the sun.

"We really didn't expect to find a hot spot with such a large offset," said Ian Crossfield, lead author of a new paper about the discovery appearing in an upcoming issue of Astrophysical Journal. "It's clear that we understand even less about the atmospheric energetics of hot Jupiters than we thought we did."

The results are part of a growing field of exoplanet atmospheric science, pioneered by Spitzer in 2005, when it became the first telescope to directly detect photons from an exoplanet, or a planet orbiting a star other than our sun. Since then, Spitzer, along with NASA's Hubble Space Telescope, has studied the atmospheres of several hot Jupiters, finding water, methane, carbon dioxide and carbon monoxide.

In the new study, astronomers report observations of upsilon Andromedae b taken across five days in February of 2009. This planet whips around its star every 4.6 days, as measured using the "wobble," or radial velocity technique, with telescopes on the ground. It does not transit, or cross in front of, its star as many other hot Jupiters studied by Spitzer do.

Spitzer measured the total combined light from the star and planet, as the planet orbited around. The telescope can't see the planet directly, but it can detect variations in the total infrared light from the system that arise as the hot side of the planet comes into Earth's field of view. The hottest part of the planet will give off the most infrared light.

One might think the system would appear brightest when the planet was directly behind the star, thus showing its full sun-facing side. Likewise, one might think the system would appear darkest when the planet swings around toward Earth, showing its backside. But the system was the brightest when the planet was to the side of the star, with its side facing Earth. This means that the hottest part of the planet is not under its star. It's sort of like going to the beach at sunset to feel the most heat. The researchers aren't sure how this could be.

They've guessed at some possibilities, including supersonic winds triggering shock waves that heat material up, and star-planet magnetic interactions. But these are just speculation. As more hot Jupiters are examined, astronomers will test new theories.

"This is a very unexpected result," said Michael Werner, the Spitzer project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., who was not a part of the study. "Spitzer is showing us that we are a long way from understanding these alien worlds."

The Spitzer observations were made before it ran out of its liquid coolant in May 2009, officially beginning its warm mission

Tuesday 19 October 2010

Europa's Hidden Ice Chemistry

The frigid ice of Jupiter's moon Europa may be hiding more than a presumed ocean: it is likely the scene of some unexpectedly fast chemistry between water and sulfur dioxide at extremely cold temperatures. Although these molecules react easily as liquids-they are well-known ingredients of acid rain-Mark Loeffler and Reggie Hudson at NASA's Goddard Space Flight Center in Greenbelt, Md., now report that they react as ices with surprising speed and high yield at temperatures hundreds of degrees below freezing. Because the reaction occurs without the aid of radiation, it could take place throughout Europa's thick coating of ice-an outcome that would revamp current thinking about the chemistry and geology of this moon and perhaps others.

"When people talk about chemistry on Europa, they typically talk about reactions that are driven by radiation," says Goddard scientist Mark Loeffler, who is first author on the paper being published in Geophysical Research Letters. That's because the moon's temperature hovers around 86 to 130 Kelvin (minus 300 to minus 225 degrees Fahrenheit). In this extreme cold, most chemical reactions require an infusion of energy from radiation or light. On Europa, the energy comes from particles from Jupiter's radiation belts. Because most of those particles penetrate just fractions of an inch into the surface, models of Europa's chemistry typically stop there.

"Once you get below Europa's surface, it's cold and solid, and you normally don't expect things to happen very fast under those conditions," explains co-author Reggie Hudson, the associate lab chief of Goddard's Astrochemistry Laboratory.

"But with the chemistry we describe," adds Loeffler, "you could have ice 10 or 100 meters [roughly 33 or 330 feet] thick, and if it has sulfur dioxide mixed in, you're going to have a reaction."

"This is an extremely important result for understanding the chemistry and geology of Europa's icy crust," says Robert E. Johnson, an expert on radiation-induced chemistry on planets and a professor of engineering physics at the University of Virginia in Charlottesville.

From remote observations, astronomers know that sulfur is present in Europa's ice. Sulfur originates in the volcanoes of Jupiter's moon Io, then becomes ionized and is transported to Europa, where it gets embedded in the ice. Additional sulfur might come from the ocean that's thought to lie beneath Europa's surface. "However," says Johnson, "the fate of the implanted or any subsurface sulfur is not understood and depends on the geology and chemistry in the ice crusts."

In experiments that simulated the conditions on Europa, Loeffler and Hudson sprayed water vapor and sulfur dioxide gas onto quarter-sized mirrors in a high-vacuum chamber. Because the mirrors were kept at about 50 to 100 Kelvin (about minus 370 to minus 280 degrees Fahrenheit), the gases immediately condensed as ice. As the reaction proceeded, the researchers used infrared spectroscopy to watch the decrease in concentrations of water and sulfur dioxide and the increase in concentrations of positive and negative ions generated.

Despite the extreme cold, the molecules reacted quickly in their icy forms. "At 130 Kelvin [about minus 225 degrees Fahrenheit], which represents the warm end of the expected temperatures on Europa, this reaction is essentially instantaneous," says Loeffler. "At 100 Kelvin, you can saturate the reaction after half a day to a day. If that doesn't sound fast, remember that on geologic timescales-billions of years-a day is faster than the blink of an eye."

To test the reaction, the researchers added frozen carbon dioxide, also known as dry ice, which is commonly found on icy bodies, including Europa. "If frozen carbon dioxide had blocked the reaction, we wouldn't be nearly as interested," explains Hudson, "because then the reaction probably wouldn't be relevant to Europa's chemistry. It would be a laboratory curiosity." But the reaction continued, which means it could be significant on Europa as well as Ganymede and Callisto, two more of Jupiter's moons, and other places where both water and sulfur dioxide are present.

The reaction converted one-quarter to nearly one-third of the sulfur dioxide into product. "This is an unexpectedly high yield for this chemical reaction," says Loeffler. "We would have been happy with five percent." What's more, the positive and negative ions produced will react with other molecules. This could lead to some intriguing chemistry, especially because bisulfite, a type of sulfur ion, and some other products of this reaction are refractory-stable enough to stick around for a while.

Robert Carlson, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., who collaborates with the two researchers, notes that earlier hints of water and sulfur dioxide reacting as solids were found but not explained. "The Loeffler and Hudson results show that really interesting acid–base reactions are going on," he says. "I am anxious to see what might happen when other species are added and how the minor concentrations of sulfur dioxide on the satellite surfaces affect the overall chemistry."

The ultimate test of the laboratory experiments will be whether evidence of any reaction products can be found in data collected during remote observations or future visits to Europa. Johnson agrees that if subsurface sulfur dioxide on Europa "reacts to form refractory species, as [the researchers] indicate, then the picture changes completely. " These results not only will affect our understanding of Europa, but can also be further refined and tested with the proposed Europa Jupiter System mission.

Re-examinatiom of 1976 Mars Data Finds Carbon

PASADENA, Calif. -- Experiments prompted by a 2008 surprise from NASA's Phoenix Mars Lander suggest that soil examined by NASA's Viking Mars landers in 1976 may have contained carbon-based chemical building blocks of life.

"This doesn't say anything about the question of whether or not life has existed on Mars, but it could make a big difference in how we look for evidence to answer that question," said Chris McKay of NASA's Ames Research Center, Moffett Field, Calif. McKay coauthored a study published online by the Journal of Geophysical Research - Planets, reanalyzing results of Viking's tests for organic chemicals in Martian soil.

The only organic chemicals identified when the Viking landers heated samples of Martian soil were chloromethane and dichloromethane -- chlorine compounds interpreted at the time as likely contaminants from cleaning fluids. But those chemicals are exactly what the new study found when a little perchlorate -- the surprise finding from Phoenix -- was added to desert soil from Chile containing organics and analyzed in the manner of the Viking tests.

"Our results suggest that not only organics, but also perchlorate, may have been present in the soil at both Viking landing sites," said the study's lead author, Rafael Navarro-González of the National Autonomous University of Mexico, Mexico City.

Organics can come from non-biological or biological sources. Many meteorites raining onto Mars and Earth for the past 5 billion years contain organics. Even if Mars has never had life, scientists before Viking anticipated that Martian soil would contain organics from meteorites.

"The lack of organics was a big surprise from the Vikings," McKay said. "But for 30 years we were looking at a jigsaw puzzle with a piece missing. Phoenix has provided the missing piece: perchlorate. The perchlorate discovery by Phoenix was one of the most important results from Mars since Viking." Perchlorate, an ion of chlorine and oxygen, becomes a strong oxidant when heated. "It could sit there in the Martian soil with organics around it for billions of years and not break them down, but when you heat the soil to check for organics, the perchlorate destroys them rapidly," McKay said.

This interpretation proposed by Navarro-González and his four co-authors challenges the interpretation by Viking scientists that Martian organic compounds were not present in their samples at the detection limit of the Viking experiment. Instead, the Viking scientists interpreted the chlorine compounds as contaminants. Upcoming missions to Mars and further work on meteorites from Mars are expected to help resolve this question.

The Curiosity rover that NASA's Mars Science Laboratory mission will deliver to Mars in 2012 will carry the Sample Analysis at Mars (SAM) instrument provided by NASA Goddard Space Flight Center, Greenbelt, Md. In contrast to Viking and Phoenix, Curiosity can rove and thus analyze a wider variety of rocks and samples. SAM can check for organics in Martian soil and powdered rocks by baking samples to even higher temperatures than Viking did, and also by using an alternative liquid-extraction method at much lower heat. Combining these methods on a range of samples may enable further testing of the new report's hypothesis that oxidation by heated perchlorates that might have been present in the Viking samples was destroying organics.

One reason the chlorinated organics found by Viking were interpreted as contaminants from Earth was that the ratio of two isotopes of chlorine in them matched the three-to-one ratio for those isotopes on Earth. The ratio for them on Mars has not been clearly determined yet. If it is found to be much different than Earth's, that would support the 1970s interpretation.

If organic compounds can indeed persist in the surface soil of Mars, contrary to the predominant thinking for three decades, one way to search for evidence of life on Mars could be to check for types of large, complex organic molecules, such as DNA, that are indicators of biological activity. "If organics cannot persist at the surface, that approach would not be wise, but if they can, it's a different story," McKay said

NASA Images "Eye" of Hurrican Earl. Sept 2010


NASA's Kepler Mission Discovers two Planets Transiting Same Star

Pasadena, Calif. -- NASA's Kepler spacecraft has discovered the first confirmed planetary system with more than one planet crossing in front of, or transiting, the same star.

The transit signatures of two distinct planets were seen in the data for the sun-like star designated Kepler-9. The planets were named Kepler-9b and 9c. The discovery incorporates seven months of observations of more than 156,000 stars as part of an ongoing search for Earth-sized planets outside our solar system. The findings will be published in this week's issue of the journal Science.

Kepler's ultra-precise camera measures tiny decreases in stars' brightness that occur when a planet transits them. The size of the planet can be derived from these temporary dips.

The distance of the planet from a star can be calculated by measuring the time between successive dips as the planet orbits the star. Small variations in the regularity of these dips can be used to determine the masses of planets and detect other non-transiting planets in the system.

In June 2010, Kepler mission scientists submitted findings for peer review that identified more than 700 planet candidates in the first 43 days of Kepler data. The data included five additional candidate systems that appear to exhibit more than one transiting planet. The Kepler team recently identified a sixth target exhibiting multiple transits and accumulated enough followup data to confirm this multi-planet system.

"Kepler's high-quality data and round-the-clock coverage of transiting objects enable a whole host of unique measurements to be made of the parent stars and their planetary systems," said Doug Hudgins, the Kepler program scientist at NASA Headquarters in Washington.

Scientists refined the estimates of the masses of the planets using observations from the W.M. Keck Observatory in Hawaii. The observations show Kepler-9b is the larger of the two planets, and both have masses similar to but less than Saturn. Kepler-9b lies closest to the star, with an orbit of about 19 days, while Kepler-9c has an orbit of about 38 days. By observing several transits by each planet over the seven months of data, the time between successive transits could be analyzed.

"This discovery is the first clear detection of significant changes in the intervals from one planetary transit to the next, what we call transit timing variations," said Matthew Holman, a Kepler mission scientist from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "This is evidence of the gravitational interaction between the two planets as seen by the Kepler spacecraft."

In addition to the two confirmed giant planets, Kepler scientists also have identified what appears to be a third, much smaller transit signature in the observations of Kepler-9. That signature is consistent with the transits of a super-Earth-sized planet about 1.5 times the radius of Earth in a scorching, near-sun 1.6 day-orbit. Additional observations are required to determine whether this signal is indeed a planet or an astronomical phenomenon that mimics the appearance of a transit.

Double Stars - Not a Good Place For Habitable Planets?

PASADENA, Calif. -- Tight double-star systems might not be the best places for life to spring up, according to a new study using data from NASA's Spitzer Space Telescope. The infrared observatory spotted a surprisingly large amount of dust around three mature, close-orbiting star pairs. Where did the dust come from? Astronomers say it might be the aftermath of tremendous planetary collisions.

"This is real-life science fiction," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "Our data tell us that planets in these systems might not be so lucky -- collisions could be common. It’s theoretically possible that habitable planets could exist around these types of stars, so if there happened to be any life there, it could be doomed."

Drake is the principal investigator of the research, published in the Aug.19 issue of the Astrophysical Journal Letters.

The particular class of binary, or double, stars in the study are about as snug as stars get. Named RS Canum Venaticorums, or RS CVns for short, they are separated by only about two-million miles (3.2-million kilometers), or two percent of the distance between Earth and our sun. The stellar pairs orbit around each other every few days, with one face on each star perpetually locked and pointed toward the other.

The close-knit stars are similar to the sun in size and are probably about a billion to a few billion years old -- roughly the age of our sun when life first evolved on Earth. But these stars spin much faster, and, as a result, have powerful magnetic fields, and giant, dark spots. The magnetic activity drives strong stellar winds -- gale-force versions of the solar wind -- that slow the stars down, pulling the twirling duos closer over time. And this is where the planetary chaos may begin.

As the stars cozy up to each other, their gravitational influences change, and this could cause disturbances to planetary bodies orbiting around both stars. Comets and any planets that may exist in the systems would start jostling about and banging into each other, sometimes in powerful collisions. This includes planets that could theoretically be circling in the double stars' habitable zone, a region where temperatures would allow liquid water to exist. Though no habitable planets have been discovered around any stars beyond our sun at this point in time, tight double-star systems are known to host planets; for example, one system not in the study, called HW Vir, has two gas-giant planets.

"These kinds of systems paint a picture of the late stages in the lives of planetary systems," said Marc Kuchner, a co-author from NASA Goddard Space Flight Center in Greenbelt, Md. "And it's a future that's messy and violent."

Spitzer spotted the infrared glow of hot dusty disks, about the temperature of molten lava, around three such tight binary systems. One of the systems was originally flagged as having a suspicious excess of infrared light in 1983 by the Infrared Astronomical Satellite. In addition, researchers using Spitzer recently found a warm disk of debris around another star that turned out to be a tight binary system.

The astronomy team says that dust normally would have dissipated and blown away from the stars by this mature stage in their lives. They conclude that something -- most likely planetary collisions -- must therefore be kicking up the fresh dust. In addition, because dusty disks have now been found around four, older binary systems, the scientists know that the observations are not a fluke. Something chaotic is very likely going on.

If any life forms did exist in these star systems, and they could look up at the sky, they would have quite a view. Marco Matranga, first author of the paper, from the Harvard-Smithsonian Center for Astrophysics and now a visiting astronomer at the Palermo Astronomical Observatory in Sicily, said, "The skies there would have two huge suns, like the ones above the planet Tatooine in 'Star Wars.'"

Dark Energy Measured By its Lensing of Galaxies


PASADENA, Calif. -- Astronomers have devised a new method for measuring perhaps the greatest puzzle of our universe -- dark energy. This mysterious force, discovered in 1998, is pushing our universe apart at ever-increasing speeds.

For the first time, astronomers using NASA's Hubble Space Telescope were able to take advantage of a giant magnifying lens in space -- a massive cluster of galaxies -- to narrow in on the nature of dark energy. Their calculations, when combined with data from other methods, significantly increase the accuracy of dark energy measurements. This may eventually lead to an explanation of what the elusive phenomenon really is.

"We have to tackle the dark energy problem from all sides," said Eric Jullo, an astronomer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It's important to have several methods, and now we've got a new, very powerful one." Jullo is lead author of a paper on the findings appearing in the Aug. 20 issue of the journal Science.

Scientists aren't clear about what dark energy is, but they do know that it makes up a large chunk of our universe -- about 72 percent. Another chunk, about 24 percent, is thought to be dark matter, also mysterious in nature but easier to study than dark energy because of its gravitational influence on matter that we can see. The rest of the universe, a mere four percent, is the stuff that makes up people, planets, stars and everything made up of atoms.

In their new study, the science team used images from Hubble to examine a massive cluster of galaxies, named Abell 1689, which acts as a magnifying, or gravitational, lens. The gravity of the cluster causes galaxies behind it to be imaged multiple times into distorted shapes, sort of like a fun house mirror reflection that warps your face.

Using these distorted images, the scientists were able to figure out how light from the more distant, background galaxies had been bent by the cluster -- a characteristic that depends on the nature of dark energy. Their method also depends on precise ground-based measurements of the distance and speed at which the background galaxies are traveling away from us. The team used these data to quantify the strength of the dark energy that is causing our universe to accelerate.

"What I like about our new method is that it's very visual," said Jullo. "You can literally see gravitation and dark energy bend the images of the background galaxies into arcs."

According to the scientists, their method required multiple, meticulous steps. They spent the last several years developing specialized mathematical models and precise maps of the matter -- both dark and "normal" -- constituting the Abell 1689 cluster.

"We can now apply our technique to other gravitational lenses," said co-author Priya Natarajan, a cosmologist at Yale University, New Haven, Conn. "We're exploiting a beautiful phenomenon in nature to learn more about the role that dark energy plays in our universe."

Mountain Formation on Titan



Saturn's moon Titan ripples with mountains, and scientists have been trying to figure out how they form. The best explanation, it turns out, is that Titan is shrinking as it cools, wrinkling up the moon's surface like a raisin.

A new model developed by scientists working with radar data obtained by NASA's Cassini spacecraft shows that differing densities in the outermost layers of Titan can account for the unusual surface behavior. Titan is slowly cooling because it is releasing heat from its original formation and radioactive isotopes are decaying in the interior. As this happens, parts of Titan's subsurface ocean freeze over, the outermost ice crust thickens and folds, and the moon shrivels up. The model is described in an article now online in the Journal of Geophysical Research.

"Titan is the only icy body we know of in the solar system that behaves like this," said Giuseppe Mitri, the lead author of the paper and a Cassini radar associate based at the California Institute of Technology in Pasadena. "But it gives us insight into how our solar system came to be."

An example of this kind of process can also be found on Earth, where the crumpling of the outermost layer of the surface, known as the lithosphere, created the Zagros Mountains in Iran, Mitri said.

Titan's highest peaks rise up to about two kilometers (6,600 feet), comparable to the tallest summits in the Appalachian Mountains. Cassini was the first to spot Titan's mountains in radar images in 2005. Several mountain chains on Titan exist near the equator and are generally oriented west-east. The concentration of these ranges near the equator suggests a common history.

While several other icy moons in the outer solar system have peaks that reach heights similar to Titan's mountain chains, their topography comes from extensional tectonics -- forces stretching the ice shell -- or other geological processes. Until now, scientists had little evidence of contractional tectonics -- forces shortening and thickening the ice shell. Titan is the only icy satellite where the shortening and thickening are dominant.

Mitri and colleagues fed data from Cassini's radar instrument into computer models of Titan developed to describe the moon's tectonic processes and to study the interior structure and evolution of icy satellites. They also made the assumption that the moon's interior was only partially separated into a mixture of rock and ice, as suggested by data from Cassini's radio science team.

Scientists tweaked the model until they were able to build mountains on the surface similar to those Cassini had seen. They found the conditions were met when they assumed the deep interior was surrounded by a very dense layer of high-pressure water ice, then a subsurface liquid-water-and-ammonia ocean and an outer water-ice shell. So the model, Mitri explained, also supports the existence of a subsurface ocean.

Each successive layer of Titan's interior is colder than the one just inside it, with the outermost surface averaging a chilly 94 Kelvin (minus 290 degrees Fahrenheit). So cooling of the moon causes a partial freezing of the subsurface liquid ocean and thickening of the outer water ice shell. It also thickens the high-pressure ice. Because the ice on the crust is less dense than the liquid ocean and the liquid ocean is less dense than the high-pressure ice, the cooling means the interior layers lose volume and the top "skin" of ice puckers and folds.

Since the formation of Titan, which scientists believe occurred around four billion years ago, the moon's interior has cooled significantly. But the moon is still releasing hundreds of gigawatts of power, some of which may be available for geologic activity. The result, according to the model, was a shortening of the radius of the moon by about seven kilometers (four miles) and a decrease in volume of about one percent.

"These results suggest that Titan's geologic history has been different from that of its Jovian cousins, thanks, perhaps, to an interior ocean of water and ammonia," said Jonathan Lunine, a Cassini interdisciplinary scientist for Titan and co-author on the new paper. Lunine is currently based at the University of Rome, Tor Vergata, Italy. "As Cassini continues to map Titan, we will learn more about the extent and height of mountains across its diverse surface."

Friday 15 October 2010

Blowing in the Wind: Cassini Helps with Dune Whodunit


The answer to the mystery of dune patterns on Saturn's moon Titan did turn out to be blowing in the wind. It just wasn't from the direction many scientists expected.

Basic principles describing the rotation of planetary atmospheres and data from the European Space Agency's Huygens probe led to circulation models that showed surface winds streaming generally east-to-west around Titan's equatorial belt. But when NASA's Cassini spacecraft obtained the first images of dunes on Titan in 2005, the dunes' orientation suggested the sands – and therefore the winds – were moving from the opposite direction, or west to east.

A new paper by Tetsuya Tokano in press with the journal Aeolian Research seeks to explain the paradox. It explains that seasonal changes appear to reverse wind patterns on Titan for a short period. These gusts, which occur intermittently for perhaps two years, sweep west to east and are so strong they do a better job of transporting sand than the usual east-to-west surface winds. Those east-to-west winds do not appear to gather enough strength to move significant amounts of sand.

A related perspective article about Tokano's work by Cassini radar scientist Ralph Lorenz, the lead author on a 2009 paper mapping the dunes, appears in this week's issue of the journal Science.

"It was hard to believe that there would be permanent west-to-east winds, as suggested by the dune appearance," said Tokano, of the University of Cologne, Germany. "The dramatic, monsoon-type wind reversal around equinox turns out to be the key."

The dunes track across the vast sand seas of Titan only in latitudes within 30 degrees of the equator. They are about a kilometer (half a mile) wide and tens to hundreds of kilometers (miles) long. They can rise more than 100 meters (300 feet) high. The sands that make up the dunes appear to be made of organic, hydrocarbon particles. The dunes' ridges generally run west-to-east, as wind here generally sheds sand along lines parallel to the equator.

Scientists predicted winds in the low latitudes around Titan's equator would blow east-to-west because at higher latitudes the average wind blows west-to-east. The wind forces should balance out, based on basic principles of rotating atmospheres.

Tokano re-analyzed a computer-based global circulation model for Titan he put together in 2008. That model, like others for Titan, was adapted from ones developed for Earth and Mars. Tokano added in new data on Titan topography and shape based on Cassini radar and gravity data. In his new analysis, Tokano also looked more closely at variations in the wind at different points in time rather than the averages. Equinox periods jumped out.

Equinoxes occur twice a Titan year, which is about 29 Earth years. During equinox, the sun shines directly over the equator, and heat from the sun creates upwelling in the atmosphere. The turbulent mixing causes the winds to reverse and accelerate. On Earth, this rare kind of wind reversal happens over the Indian Ocean in transitional seasons between monsoons.

The episodic reverse winds on Titan appear to blow around 1 to 1.8 meters per second (2 to 4 mph). The threshold for sand movement appears to be about 1 meter per second (2 mph), a speed that the typical east-to-west winds never appear to surpass. Dune patterns sculpted by strong, short episodes of wind can be found on Earth in the northern Namib sand seas in Namibia, Africa.

"This is a subtle discovery -- only by delving into the statistics of the winds in the model could this rather distressing paradox be resolved," said Ralph Lorenz, a Cassini radar scientist based at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. "This work is also reassuring for preparations for proposed future missions to Titan, in that we can become more confident in predicting the winds which can affect the delivery accuracy of landers, or the drift of balloons."

NASA Telescope Finds Elusive Buckyballs in Space for First Time


, Calif. - Astronomers using NASA's Spitzer Space Telescope have discovered carbon molecules, known as "buckyballs," in space for the first time. Buckyballs are soccer-ball-shaped molecules that were first observed in a laboratory 25 years ago.

They are named for their resemblance to architect Buckminster Fuller's geodesic domes, which have interlocking circles on the surface of a partial sphere. Buckyballs were thought to float around in space, but had escaped detection until now.

"We found what are now the largest molecules known to exist in space," said astronomer Jan Cami of the University of Western Ontario, Canada, and the SETI Institute in Mountain View, Calif. "We are particularly excited because they have unique properties that make them important players for all sorts of physical and chemical processes going on in space." Cami has authored a paper about the discovery that will appear online Thursday in the journal Science.

Buckyballs are made of 60 carbon atoms arranged in three-dimensional, spherical structures. Their alternating patterns of hexagons and pentagons match a typical black-and-white soccer ball. The research team also found the more elongated relative of buckyballs, known as C70, for the first time in space. These molecules consist of 70 carbon atoms and are shaped more like an oval rugby ball. Both types of molecules belong to a class known officially as buckminsterfullerenes, or fullerenes.

The Cami team unexpectedly found the carbon balls in a planetary nebula named Tc 1. Planetary nebulas are the remains of stars, like the sun, that shed their outer layers of gas and dust as they age. A compact, hot star, or white dwarf, at the center of the nebula illuminates and heats these clouds of material that has been shed.

The buckyballs were found in these clouds, perhaps reflecting a short stage in the star's life, when it sloughs off a puff of material rich in carbon. The astronomers used Spitzer's spectroscopy instrument to analyze infrared light from the planetary nebula and see the spectral signatures of the buckyballs. These molecules are approximately room temperature -- the ideal temperature to give off distinct patterns of infrared light that Spitzer can detect. According to Cami, Spitzer looked at the right place at the right time. A century from now, the buckyballs might be too cool to be detected.

The data from Spitzer were compared with data from laboratory measurements of the same molecules and showed a perfect match.

"We did not plan for this discovery," Cami said. "But when we saw these whopping spectral signatures, we knew immediately that we were looking at one of the most sought-after molecules."

In 1970, Japanese professor Eiji Osawa predicted the existence of buckyballs, but they were not observed until lab experiments in 1985. Researchers simulated conditions in the atmospheres of aging, carbon-rich giant stars, in which chains of carbon had been detected. Surprisingly, these experiments resulted in the formation of large quantities of buckminsterfullerenes. The molecules have since been found on Earth in candle soot, layers of rock and meteorites.

The study of fullerenes and their relatives has grown into a busy field of research because of the molecules' unique strength and exceptional chemical and physical properties. Among the potential applications are armor, drug delivery and superconducting technologies.

NASA Goes Deep in Search of Extreme Environments

An expedition partially funded by NASA, part of a program to search extreme environments for geological, biological and chemical clues to the origins and evolution of life, has discovered the deepest known hydrothermal vent in the world, nearly 5,000 meters (16,400 feet) below the surface of the western Caribbean Sea. The research will help extend our understanding of the limits to which life can exist on Earth and help prepare for future efforts to search for life on other planets.

An interdisciplinary team led by Woods Hole Oceanographic Institution, Woods Hole, Mass., and including research scientist Max Coleman of NASA's Jet Propulsion Laboratory, Pasadena, Calif., sailed to the western Caribbean in October 2009 aboard the research vessel Cape Hatteras. Using sensors mounted on equipment and robotic vehicles, they searched for deep-sea hydrothermal vents along the 110-kilometer-long (68-mile-long) Mid-Cayman Rise, an ultra-slow spreading ridge located in the Cayman Trough -- the deepest point in the Caribbean Sea. Results of their research are published this week in the Proceedings of the National Academy of Sciences.

While high-temperature submarine vents were first discovered more than 30 years ago, the majority of the global Mid-Ocean Ridge, an underwater mountain range that snakes its way for more than 56,000 kilometers (35,000 miles) between Earth's continents, remains unexplored for hydrothermal activity. While such activity occurs on spreading centers all around the world, scientists are particularly interested in Earth's ultra-slow spreading ridges, like the Mid-Cayman Rise, which may host systems that are particularly relevant to pre-biotic chemistry and the origins of life. The Mid-Cayman Rise is part of the tectonic boundary between the North American and Caribbean Plates. At the boundary where the plates are being pulled apart, new material wells up from Earth's interior to form new crust on the seafloor.

The researchers found that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction. The diversity of the newly discovered vent types, their geologic settings and their relative geographic isolation make the Mid-Cayman Rise a unique environment in the world's ocean.

"This was probably the highest-risk expedition I have ever undertaken," said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. "We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected - but then finding out that our data indicated that each site represents a different style of venting - one of every kind known, all in pretty much the same place - was extraordinarily cool."

The team identified the deepest known hydrothermal vent site and two additional distinct types of vents, one of which is believed to be a shallow, low-temperature vent of a kind that has been reported only once previously - at the "Lost City" site in the mid-Atlantic Ocean.

"Being the deepest, these hydrothermal vents support communities of organisms that are the furthest from the ocean surface and sources of energy like sunlight," said JPL co-author Coleman. "Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That's not an option for possible life deep in the ocean of Jupiter's icy moon Europa, prioritized by NASA for future exploration. However, organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa, and this work will help us understand what we might find when we search for life there."

"We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth," said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. "We have absolutely zero microbial data from high-temperature vents at this depth." Huber and Marine Biological Laboratory postdoctoral scientist Julie Smith participated in this cruise to collect samples, and all of the microbiology work for this paper was carried out in Huber's laboratory. "With the combination of extreme pressure, temperature and chemistry, we are sure to discover novel microbes in this environment," Huber added. "We look forward to returning to the Cayman and sampling these vents in the near future. We are sure to expand the known growth parameters and limits for life on our planet by exploring these new sites."